11.2 说理(2)教案(苏科版八年级下)doc--初中数学.doc
上传人:13****88 上传时间:2024-09-15 格式:DOC 页数:2 大小:17KB 金币:6 举报 版权申诉
预览加载中,请您耐心等待几秒...

11.2 说理(2)教案(苏科版八年级下)doc--初中数学.doc

11.2说理(2)教案(苏科版八年级下)doc--初中数学.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

6 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数http://cooco.net.cn永久免费在线组卷课件教案下载无需注册和点数11.2说理(2)教案[教学过程]1.情境创设日常生活中,人们为了交流思想,常常用到一些名称和术语,只需对这些名称和术语有了共识,才可以正常的交流.类似地,数学中要进行说理,必须对涉及的概念有共识,也就是需求对概念下定义.2.探索活动问题一(1)什么是全体的一个“样本”?(2)怎样的两个数叫“互为相反数”?(3)怎样的两个图形叫“全等形”?设计问题一,先生回忆这些概念的定义,引导先生感受数学中如何给概念下定义;;’定义的规则是:(1)应相等,即定义概念和定义概念的外延相等;(2)不应循环;(3)普通不应是否定判断;(4)应清楚确切.教学中只需通过具体的例子来引导先生感受就可以了.问题二(1)“等角的余角相等.”与“等角的余角相等吗?”这两句话一样吗?如不一样,它们有什么不同?(2)“经过一点有且只需一条直线与已知直线垂直”与“经过一点画已知直线的垂线”有什么不同?(3)“四边形不是多边形”与“四边形不必然是多边形”又有什么不同?问题二中的句子,一类是对某一件事情做出了判断;另一类是没有对某一件事情做出判断.引导先生通过这两类(命题与非命题)具体例子的辨析,了解什么是命题,什么不是命题.对某一件事情做出判断的句子,有的做出了正确的判断,有的做出了错误的判断。比如,“四边形不是多边形”这个句子的判断是错误的,教学中先生可能会误认为这样的句子不是命题.可以结合这个例子,说明凡做出判断的句子都是命题,不论判断是否正确.问题三请你例举一些命题.问题四观察下列命题,你能发现它们有什么共同的结构特征吗?命题(1)如果a>0,b<0,那么命题(2)如果两个三角形的三条边对应相等,那么这两个三角形全等;命题(3)如果一个三角形有2个角相等,那么这2个角所对的边也相等.问题五下列各命题的条件是什么?结论是什么?命题(4)对顶角相等;命题(5)同位角相等,两直线平行;命题(6)面积相等的两个三角形全等.由于命题“对顶角相等”的条件和结论不明显,先生可能会把这个命题分成“对顶角”和“相等”两部分,认为这个命题的条件是“对顶角”,这个命题的结论是“相等”.实际教学中,可以在先生讨论、交流的基础上,画出与这个命题相关的图形,因而就有不同的表述(这个命题的条件是“两个角是对顶角”,结论是“这两个角相等”),对照图形比较这两种不同的表述.前一种的表述中,条件和结论都不是完整的句子,显然不如后一种的表述清楚精确.进而引导先生对于条件和结论不明显的命题可以先画出与命题相关的图形或将命题改写成“如果……那么……”的方式,然后再写出条件和结论.问题六在上述6千命题中,哪些命题做出的判断是正确的?哪些命题做出的判断是错误的?你是如何知道它们做出的判断是错误的?命题(2)、(3)、(4)、(5)是真命题,命题(1)、(6)是假命题.教学中,应在先生充分交流各自的判断方法的基础上,引导先生体会:①真命题:如果题设成立,那么判断总是正确的;假命题:当题设成立时,判断不能保证总是正确的.②要说明一个命题是假命题,只需举出一个“反例”就可以了;而要说明一个命题是真命题,无论验证多少个例子,都无法保证这个命题的正确性.关于“反例”,将在本章第4节再做介绍,这里初步引导先生体会反例的作用.3.例题教学课本没有安排例题,教学时可将本节“讨论”的问题作为例题进行教学.4.小结(1)说说你对命题的认识;(2)举出1—2个命题,并分别说出它们的条件和结论.
立即下载