如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
-1-巧手剪叠新天地-------中招折叠剪切问题折叠剪切问题重在考察动手操作问题,要求学生具有较强的空间想象能力,近年来已成为中招创新试题的热点题型。解此类题时要把握:图形虽然经过折叠剪切发生了变化,但原图形的的一些基本信息并没有改变,而且在变化后的图形中还出现了一些全等形,我们应充分理解操作要求,抓住问题的关键方可解答出此类问题.一.折叠后求角度例1、用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.二.折叠后求面积例2、如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF的面积为()A.4B.6C.8D.10例3、如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是()A.2B.4C.8D.10三.折叠后求长度例4、如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且EDBC,则CE的长是()(A)10315(B)1053(C)535(D)20103图(1)CDEBA图(2)ABCDEF-2-四.折叠后得图形例5、如图,已知BC为等腰三角形纸片ABC的底边,AD⊥BC,AD=BC.将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是()A.1B.2C.3D.4五.折叠后得结论例6、从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是(A.a2–b2=(a+b)(a-b)B.(a–b)2=a2–2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)六.折叠和剪切的应用例7、将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.(1)(2)ABCDEFMG-3-练习作业1、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′等于()A.50°B.55°C.60°D.65°2、在下列图形中,沿着虚线将长方形剪成两部分,那么由这两部分既能拼成平行四边形又能拼成三角形和梯形的是()A.B.C.D.3、如图,把矩形ABCD对折,折痕为MN(图甲),再把B点叠在折痕MN上的B'处。得到RtABE'(图乙),再延长EB'交AD于F,所得到的EAF是()A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形4、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则A与12之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是()A.A12B.212AC.3212AD.)21(23A5、如图,一张矩形报纸ABCD的长AB=acm,宽BC=bcm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则a∶b等于().A.1:2B.2:1C.1:3D.3:16、如图,⊙O表示一圆形纸板,根据要求,需通过多次剪裁,把它剪成若干个扇形面,操作过程如下:第1次剪裁,将圆形纸板等分为4个扇形;第2次剪裁,将上次得到的扇形面中的一个再等分成4个扇形;以后按第2次剪裁的作法进行下去.(1)请你在⊙O中,用尺规作出第2次剪裁后得到的7个扇形(保留痕迹,不写作法).(2)请你通过