如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
等比数列的前n项和教案作为一名无私奉献的老师,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。那么你有了解过教案吗?下面是小编帮大家整理的等比数列的前n项和教案,希望对大家有所帮助。等比数列的前n项和教案1教学准备教学目标熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。教学重难点熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。教学过程【复习要求】熟悉与数列知识相关的背景,如增长率、存款利息等问题,提高学生阅读理解能力、抽象转化的能力以及解答实际问题的能力,强化应用仪式。【方法规律】应用数列知识界实际应用问题的关键是通过对实际问题的综合分析,确定其数学模型是等差数列,还是等比数列,并确定其首项,公差或公比等基本元素,然后设计合理的计算方案,即数学建模是解答数列应用题的关键。一、基础训练1、某种细菌在培养过程中,每20分钟*一次一个*为两个,经过3小时,这种细菌由1个可繁殖成A、511B、512C、1023D、10242、若一工厂的生产总值的'月平均增长率为p,则年平均增长率为A、B、C、D、二、典型例题例1:某人每期期初到银行存入一定金额A,每期利率为p,到第n期共有本金nA,第一期的利息是nAp,第二期的利息是n—1Ap……,第n期即最后一期的利息是Ap,问到第n期期末的本金和是多少?评析:此例来自一种常见的存款叫做零存整取。存款的方式为每月的某日存入一定的金额,这是零存,一定时期到期,可以提出全部本金及利息,这是整取。计算本利和就是本例所用的有穷等差数列求和的方法。用实际问题列出就是:本利和=每期存入的金额[存期+1/2存期存期+1利率]例2:某人从1999到20xx年间,每年6月1日都到银行存入m元的一年定期储蓄,若每年利率q保持不变,且每年到期的存款本息均自动转为新的一年定期,到20xx年6月1日,此人到银行不再存款,而是将所有存款的本息全部取回,则取回的金额是多少元?例3、某地区位于沙漠边缘,人与自然进行长期顽强的斗争,到1999年底全地区的绿化率已达到30%,从20xx年开始,每年将出现以下的变化:原有沙漠面积的16%将栽上树,改造为绿洲,同时,原有绿洲面积的4%又被侵蚀,变为沙漠。问经过多少年的努力才能使全县的绿洲面积超过60%。lg2=0.3例4、流行性感冒简称流感是由流感病毒引起的急性呼吸道传染病。某市去年11月分曾发生流感,据资料记载,11月1日,该市新的流感病毒感染者有20人,以后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染着减少30人,到11月30日止,该市在这30天内感染该病毒的患者共有8670人,问11月几日,该市感染此病毒的新的患者人数最多?并求这一天的新患者人数。等比数列的前n项和教案2一、教材分析与学情分析“等比数列前n项和(一)”是教学等差数列前n项和后的数列求和,它是数列教学的重点。因此,知识目标是等比数列的前n项和公式及公式推导和思路,它是本节的重点,也是基于等比数列的“等比”特性的一种特殊求和方法。再对公比q的讨论,从而得到等比数列的前n项和公式。由于是理科实验班的教学,学生起点高,能力较强,通过创设适当的问题情景,引出数学教学的内容,在“观察”、“类比”、“分析”、“思考”、“探究”等活动中,引导学生自己发现问题、提出问题,通过亲身的探究,主动的思考,进而联想推出等比数列的求和公式。而德育目标则是通过自主探究,学生自己动手,激发学生数学学习的兴趣,陶冶学生的情操,提高学生的数学修养、科学的学习态度和创新精神。本课融数学文化于其中,使学生在良好的数学文化的氛围中快乐的学习,在数学的美中享受学习数学的快乐。二、教学目标1.掌握等比数列的前n项和公式及公式推导和思路;2.培养学生的综合能力,提高学生的数学修养;3.会灵活运用等比数列的前n项和公式解决问题.三、教学重点、教学难点教学重点1.等比数列的前n项和公式;2.等比数列的前n项和公式推导.教学难点1.错项相减的数学思想方法2.使用公式求和时,对q=1和q≠1的情况加以讨论;四、教学方法1.启发讨论法(老师引导,学生自己动手,学生讨论)2.利用多媒体、投影仪五、设计思路1.等比数列n项和公式(一)教学的“三步曲”第一步,由故事创设情景,使学生提出问题,进而引出课题第二步,学生观察、分析等比数列的前n项中各项的特点,进而探索解决问题的方法。第三步,学生在公式的推导中,特别是对公比q的讨论。学生解决问题前要“设想”----解决过程中要“联想”(解决的方法)----解决后要“