如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
4.4电磁感应中的双杆问题分类例析电磁感应中的双杆问题分类例析“双杆”类问题是电磁感应中常见的题型,也是电磁感应中的一个难道,下面对“双杆”类问题进行分类例析1、“双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。2.“双杆”在等宽导轨上同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。3.“双杆”中两杆在等宽导轨上做同方向上的加速运动。“双杆”中的一杆在外力作用下做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。4.“双杆”在不等宽导轨上同向运动。“双杆”在不等宽导轨上同向运动时,两杆所受的安培力不等大反向,所以不能利用动量守恒定律解题。【例5】如图所示,间距为l、电阻不计的两根平行金属导轨MN、PQ(足够长)被固定在同一水平面内,质量均为m、电阻均为R的两根相同导体棒a、b垂直于导轨放在导轨上,一根轻绳绕过定滑轮后沿两金属导轨的中线与a棒连接,其下端悬挂一个质量为M的物体C,整个装置放在方向竖直向上、磁感应强度大小为B的匀强磁场中。开始时使a、b、C都处于静止状态,现释放C,经过时间t,C的速度为、b的速度为。不计一切摩擦,两棒始终与导轨接触良好,重力加速度为g,求:(1)t时刻C的加速度值;(2)t时刻a、b与导轨所组成的闭合回路消耗的总电功率。解析:(1)根据法拉第电磁感应定律,t时刻回路的感应电动势=1\*GB3①回路中感应电流=2\*GB3②以a为研究对象,根据牛顿第二定律=3\*GB3③以C为研究对象,根据牛顿第二定律=4\*GB3④联立以上各式解得(2)解法一:单位时间内,通过a棒克服安培力做功,把C物体的一部分重力势能转化为闭合回路的电能,而闭合回路电能的一部分以焦耳热的形式消耗掉,另一部分则转化为b棒的动能,所以,t时刻闭合回路的电功率等于a棒克服安培力做功的功率,即解法二:a棒可等效为发电机,b棒可等效为电动机a棒的感应电动势为=5\*GB3⑤闭合回路消耗的总电功率为=6\*GB3⑥联立=1\*GB3①=2\*GB3②=5\*GB3⑤=6\*GB3⑥解得解法三:闭合回路消耗的热功率为b棒的机械功率为故闭合回路消耗的总电功率为说明:在单位时间t内,整个系统的功能关系和能量转化关系如下:C物体重力做功C物体重力势能的减少量C物体克服细绳拉力做功C物体动能的增加量细绳拉力对a棒做功a棒克服安培力做功a棒动能的增加量闭合回路消耗的总电能安培力对b棒做正功闭合回路产生的焦耳热b棒动能的增加量模型:a棒可等效为发电机,b棒可等效为电动机【例1】两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.05T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m.两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0s,金属杆甲的加速度为a=1.37m/s,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.解析:设任一时刻t,两金属杆甲、乙之间的距离为x,速度分别为vl和v2,经过很短的时间△t,杆甲移动距离v1△t,杆乙移动距离v2△t,回路面积改变△S=[(x一ν2△t)+ν1△t]l—lχ=(ν1-ν2)△t由法拉第电磁感应定律,回路中的感应电动势E=B△S/△t=Bι(νl一ν2)回路中的电流i=E/2R杆甲的运动方程F—Bli=ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量.Ft=mνl+mν2联立以上各式解得ν1=[Ft/m+2R(F一ma)/B2l2]/2ν2=[Ft/m一2R(F一ma)/B2l2]/2代入数据得移νl=8.15m/s,v2=1.85m/sBv0Lacdb【例2】两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示.两根导体棒的质量均为m,电阻均为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd静止,棒ab有指向棒cd