如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
/NUMPAGES7数学必修5模块测试(完成时间120分钟,全卷满分150分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在中,,则∠B等于()A.B.或C.或D.2.两灯塔A,B与海洋观察站C的距离都等于100(km),灯塔A在C北偏东30,B在C南偏东60,则A,B之间的相距约()A.100(km)B.173(km)C.141(km)D.180(km)3.在△ABC中,AB=3,BC=,AC=4,则边AC上的高为()A.B.C.D.4.已知是正实数,A是的等差中项,G是的等比中项,则()A.B.C.D.5.在等差数列中,,则此数列前13项的和为()A.26B.13C.39D.526.下列函数中,最小值为4的是()A.B.C.D.7.设都是正实数,且,则的取值范围是()A.B.C.D.8.若不等式的解集为,则实数等于()A.8B.2C.D.9.已知,且,则的范围是()A.B.C.D.10.已知数列的通项公式是,且对任意的,不等式恒成立,则实数的取值范围是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.的三内角A、B、C成等差数列,所对的三边a、b、c成等比数列,则.12.数列1,2,3,4,5,…,n,的前n项之和等于.13.已知平面区域由以、、为顶点的三角形内部和边界组成.若在区域上有无穷多个点可使目标函数取得最小值,则.14.钝角三角形三边长为,且最大角不超过,则的取值范围是.三、解答题(本大题共6小题,满分80分.解答应写出必要的文字说明、证明过程或推演步骤)15.(本小题满分13分)在△ABC中,已知,b=2,△ABC的面积S=,求第三边c.16.(本小题满分13分)已知{}是公比为q的等比数列,且成等差数列,且公差不为0,{}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n2时,比较Sn与bn的大小,并说明理由.17.(江苏本小题满分13分)在△ABC中,已知,判断△ABC的形状.18.(本小题满分13分)数列为正项等比数列,它的前项和为80,其中数值最大的项为54,前项的和为6560,试求此数列的首项与公比.19.(本小题满分14分)某人年初向银行贷款10万元用于买房(1)如果他向建设银行贷款,年利率为5%,且这笔借款分10次等额归还(不计复利),每年还一次,并从借后次年年初开始归还,问每年应还多少元(精确到1元);(2)如果他向工商银行贷款,年利率为4%,要按复利计算(即本年的利息计入次年的本金生息),仍分10次等额归还,每年一次,每年应还多少元(精确到1元).(1.04=1.4802)20.(本小题满14分)A、B两地相距s千米,要将A地产的汽油运至B地,己知甲、乙两型汽车行驶s千米的油耗量(空载、满载一样)分别为各自满载油量的和,且甲型车的满载油量是乙型车的,今拟在A、B两地之间设一运油站C,由A出发,往返于A、C之间的甲型车将A处汽油运至C处,再从C出发往返C、B之间的乙型车将C处收到的汽油运至B处,若C处收到的汽油应一次运走,且各辆车往返的油耗从各自所载油中扣除,问C设何处,可使运油率(B地收到的油÷A地发出的油)最大?此时甲乙二型车应如何配备?参考答案1.选B.,因为,所以,或.2.选C.,.3.选B.,,BC边上的高为.4.选C.,.5.选A.即,化简得,又.6.选C.A中不一定是正数,B、D中“=”不成立.7.选B..8.选C.原不等式即,当时,,所以且,矛盾;当时,同理可得.9.选D.作不等式组在平面内表示的区域,易见分别在点与点处取得最小值与最大值.10.选D.,所以,即.11.填0.A、B、C成等差数列得,且,所以,由余弦定理得,并将代入即可得,所以.12.填.原式.13.填1.由、、的坐标位置知,所在的区域在第一象限,故.由得,它表示斜率为.(1)若,则要使取得最小值,必须使最小,此时需,即1;(2)若,则要使取得最小值,必须使最小,此时需,即2,与矛盾.综上可知,1.14.填.因最大角不超过120,所以.即,解得.15.解:∵S∴又∵,∴,或当时,=2当时,.16.解:由题设即解得,或.因为,所以.,则当时,.故对于,当时;当时,;当时,.17.解:依题意得将正弦定理、余弦定理代入上式得即:化简得:即所以△ABC为直角三角形.18.解:因为,