广东省广州市第二中学2024届高一数学第二学期期末统考试题含解析.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:15 大小:2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

广东省广州市第二中学2024届高一数学第二学期期末统考试题含解析.pdf

广东省广州市第二中学2024届高一数学第二学期期末统考试题含解析.pdf

预览

免费试读已结束,剩余 5 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

广东省广州市第二中学2024届高一数学第二学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.空间中可以确定一个平面的条件是()A.三个点B.四个点C.三角形D.四边形2.在ABC中,ABACABAC,AB2,AC1,E,F为BC的三等分点,则AE·AF()8102526A.B.C.D.99993.下列函数中周期为,且图象关于直线x对称的函数是()3xA.y2sinB.y2sin2x236xC.y2sin2xD.y2sin32324.为了得到函数ycos2x的图象,可以将函数ycos2x的图象()3A.向左平移个单位长度6B.向左平移个单位长度3C.向右平移个单位长度6D.向右平移个单位长度35.对于函数f(x),在使f(x)M成立的所有常数M中,我们把M的最大值称为函数f(x)的“下确界”若.函数f(x)3cos2x1,x,m的“下确界”为361,则m的取值范围是()255A.,B.,C.,D.,62626666x2y226.已知椭圆C的方程为1(m0),如果直线yx与椭圆的一个交点8m22M在x轴上的射影恰好是椭圆的右焦点F,则m的值为()A.2B.22C.4D.87.函数f(x)cos(x),x,的值域是()62213111A.,1B.,1C.,D.,1222228.不等式x22x30的解集为A.(3,1)B.(,3)(1,)C.(1,3)D.(,1)(3,)9.甲、乙两位射击运动员的5次比赛成绩(单位:环)如茎叶图所示,若两位运动员平均成绩相同,则成绩较稳定(方差较小)的那位运动员成绩的方差为A.2B.4C.6D.810.在中,内角所对的边分别为.若,则的值为()A.B.C.D.0二、填空题:本大题共6小题,每小题5分,共30分。11.底面边长为3,4,5,高为6的直三棱柱形容器内放置一气球,使气球充气且尽可能的膨胀(保持球的形状),则气球表面积的最大值为_______.1112.已知等差数列anN*中,a1,a,则该等差数列的公差的值n252是______.2n13.计算:lim__________.n3n11214.已知在ABC中,cotA,则cosA____________.515.方程的解集为________.16.在圆心为O,半径为2的圆内接ABC中,角A,B,C的对边分别为a,b,c,且a42a2b2c2c4b4b2c20,则OBC的面积为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥P-ABCD中,PA底面ABCD,AD//BC,ABADAC3,PABC4,M为线段AD上一点,AM2MD,N为PC的中点.(1)证明:MN//平面PAB;(2)求直线AN与平面PMN所成角的余弦值.18.已知数列的前项和为.(1)求数列的通项公式;(2)设,求数列的前项和.19.如图,在直三棱柱ABCABC中,ABACAA,二面角BAAC为直角,D11111为BC的中点.11(1)求证:平面ADC平面BBCC;111(2)求直线AC与平面BBCC所成的角.11120.已知向量a2,3,b3,4,ca2b.(1)求bc(2)若ab与3ab垂直,求实数的值.21.已知O为坐标原点,OA2cosx,3,OBsinx3cosx,1,若fxOAOB2.(Ⅰ)求函数fx的单调递减区间;(Ⅱ)当x
立即下载