2024年四川省成都市双流中学中考数学一模试卷及参考答案.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:7 大小:2.6MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2024年四川省成都市双流中学中考数学一模试卷及参考答案.pdf

2024年四川省成都市双流中学中考数学一模试卷及参考答案.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2024年四川省成都市双流中学中考数学一模试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(4分)﹣2的相反数是()A.2B.﹣2C.D.2.(4分)如图所示的几何体由5个大小相同的立方块搭成,则该几何体的左视图是()A.B.C.D.3.(4分)2023年是不平凡的一年,在严峻的经济环境下,中国经济增速达到了8.1%,令世界瞩目.人均GDP是一个地区经济发展水平的重要指标,2023年成都市的人均GDP约为89535元,将数据89535用科学记数法表示为()A.89.535×103B.8.9535×104C.8.9535×106D.0.89535×1044.(4分)下列运算中正确的是()A.a5•a3=a15B.(2a2+a)÷a=2aC.2a+3b=5abD.(a+b)(a﹣b)=a2﹣b25.(4分)六名同学的数学成绩分别为83,91,91,78,94,89.这组数据的众数和中位数分别是()A.91,89B.94,90C.91,90D.91,916.(4分)若关于x的分式方程的解为x=3,则m的值为()A.1B.2C.3D.57.(4分)往直径为60cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,则水的最大深度为()()A.10cmB.11cmC.12cmD.20cm8.(4分)已知抛物线y=ax2+bx+c的图象如图所示,下列说法不正确的是()A.abc<0B.a+b+c=2C.b2﹣4ac>0D.当x>﹣1时,y随x增大而减小二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.(4分)分解因式4xy﹣6xz=.10.(4分)在平面直角坐标系中,点P(﹣3,2)关于原点O中心对称的点P'的坐标为.11.(4分)如图,△ABC与△DEF位似,位似中心为点O.已知OA:OD=1:3,若△ABC的周长等于4,则△DEF的周长等于.12.(4分)已知点A的坐标为(a,y1)和点B的坐标为(a+1,y2)都在一次函数y=3x﹣2图象上,则y2﹣y1的值为.13.(4分)如图,在▱ABCD中,以点A为圆心AB长为半径作弧交AD于点F,分别以点B、F为圆心,大于BF的长度为半径作弧,交于点G,连接AG并延长交BC于点E,若BF=8,AB=6,则AE的长为.()三、解答题:(本大题共5个小题,共48分)14.(12分)(1)计算:()﹣1+﹣6sin45°+|﹣2|.(2)解不等式组:.15.(8分)2024年,教育部先后印发对中小学生手机、睡眠、读物、作业、体质管理的通知,简称五项管理,是教育部旨在推进立德树人,促进学生身体健康、全面发展的重大举措.成都立格实验学校高度重视并积极推进五项管理.为了解立格学子手机使用情况,学校调查了部分学生寒假每天手机使用平均时长.根据调查结果,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)参加这次调查的学生人数为,图①中m的值为;(2)求参与调查的这组学生手机使用平均时长为4小时的圆心角度数;(3)通过调查分析发现,手机使用时长和学习成绩成负相关,为此,学校准备在参与调查的每天手机使用平均时长为1小时的四位同学(三男一女)中任选两位同学在全校做分享交流,请用列表或画树状图的方法,求选中两男的概率.16.(8分)凤翔湖是双流区规划建设“五湖四海”公园之一,如图,为测量双流凤翔湖规划厅A到湖心小岛C的距离,某校数学兴趣小组选择了观察点B进行了如下测量,测得∠CAB=45°,∠CBA=70°,AB之间的距离约为1.5km,请计算出双流凤翔湖规划厅A到湖心岛C的距离.(结果精确到0.1km)(参考数据:tan70°≈2.75,sin70°≈0.94,cos70°≈0.34,≈1.41)()17.(10分)如图,AB为⊙O的直径,C为⊙O上一点,CD为⊙O的切线,且AC平分∠BAD.(1)求证:AD⊥DC;(2)若,AC=,求CD的长.18.(10分)如图1,在平面直角坐标系中,点A(﹣4,0),点B(0,4),直线AB与反比例函数y=(k≠0)的图象在第一象限相交于点C(a,6),(1)求反比例函数的解析式;(2)如图2,点E(6,m)是反比例函数y=(k≠0)图象上一点,连接CE,AE,试问在x轴上是否存在一点D,使△ACD的面积与△ACE的面积相等,若存在,请求点D的坐标;若不存在,请说明理