一元二次方程教学设计.docx
上传人:lj****88 上传时间:2024-09-12 格式:DOCX 页数:58 大小:43KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

一元二次方程教学设计.docx

一元二次方程教学设计.docx

预览

免费试读已结束,剩余 48 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

一元二次方程教学设计一元二次方程教学设计在教学工作者实际的教学活动中,常常要写一份优秀的教学设计,借助教学设计可以提高教学效率和教学质量。我们该怎么去写教学设计呢?下面是小编帮大家整理的一元二次方程教学设计,仅供参考,大家一起来看看吧。一元二次方程教学设计1教材分析一元二次方程是中学数学的一个重要内容之一,在初中数学中占有重要地位。从知识的发展来看,一元二次方程的学习,是一元一次方程、方程组及不等式知识的延续和深化,也是今后学生学习可化为一元二次方程的方程、一元二次不等式、二次函数等知识的基础。从知识的横向来看,一元二次方程的学习对其它学科也有重要的意义,比如物理中的变速运动等问题就要通过解一元二次方程来解决。这节课是一元二次方程的概念课,通过丰富的实例,抽象出一元二次方程的概念。本节课的教学不仅使学生进一步体会方程是刻画现实世界中数量关系的一个有效的数学模型,而且提高了学生分析、比较、抽象和概括的能力。为接下来的学习起到很好的铺垫作用学情分析九年级的学生,在讲本节课之前,已经系统的学习了一元一次方程及相关概念,学习了整式、分式和二次根式,从知识结构上看他们已经具备了继续探究一元二次方程的基础。这个阶段的学生自主探究和合作交流的能力很强,并且他们比较、分析、抽象和概括的能力也有很大提高。由于他们有强烈的求知欲,当遇到新的问题时,会自然的产生进一步探究的'欲望。而我所教(11)班是年级中一个普通班,学生数学底子薄,基础差,学生由于学习困难,基础差,没有自信,也就对数学的学习兴趣越来越弱,有人甚至要放弃对数学的学习,作为他们的老师,首先培养他们自信心,启发他们对数学的喜爱,慢慢培养他们的自信心,使数学基本概念、基本运算方法悄然走进学生的生活、走进他们对知识的运用中去。教学目标一、知识与技能:1.理解并掌握一元二次方程的概念,知道一元二次方程的一般形式;2.会把一个一元二次方程化为一般形式,会正确地判断一元二次方程的项与系数;3.通过本节课的学习,培养学生观察、比较、分析、探究和归纳的能力。二、过程与方法1.在回顾一元一次方程的概念的基础上,让学生通过分析实际问题中的数量关系列出方程,从而引导他们发现问题,然后通过自主探究和合作交流,抽象出一元二次方程的概念;2.借助于多媒体从实际问题抽象出概念,在通过巩固训练、回顾梳理、拓展提高到作业布置,完成本节课的教学三、情感态度与价值观1.通过本节课的学习使学生认识到数学来源于生活实践,又反过来作用于生活的辩证唯物主义观点,激发学生学数学、用数学的意识;2.通过本节知识的学习,使学生认识到知识的产生、变化和发展的过程。教学重点和难点重点:一元二次方程的概念及一般形式。难点:1.由实际问题向数学问题的转化过程。2.正确识别一般式中的“项”及“系数”。一元二次方程教学设计2教材内容1、本单元教学的主要内容。一元二次方程概念;解一元二次方程的方法;一元二次方程的应用题。2本、单元在教材中的地位与作用。一元二次方程是在学习《一元一次方程》、《二元一次方程组》、《分式方程》等基础之上学习的,它也是一种数学建模的方法。学好一元二次方程是学好二次函数不可或缺的,应该说,一元二次方程是本书的重点内容。教学目标1、知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。2、过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。根据数学模型恰如其分地给出一元二次方程的概念。(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程。(4)通过用已学的`配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2—4ac>0,b2—4ac=0,b2—4ac(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它。(6)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题。3、情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣。教学重点1、一元二次方程及其它有关的概念。2、用配方法、公式法、因式分解法降次──解一元二次方程。3、利