如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第九讲恒等变形吴忠市第一中学韩瑞峰一、知识要点1、代数式的恒等:两个代数式,如果对于字母的一切允许值,它们的值都相等,则称这两个代数式恒等。2、恒等变形:通过变换,将一个代数式化为另一个与它恒等的代数式,称为恒等变形。二、例题示范例1、已知a+b+c=2,a2+b2+c2=8,求ab+bc+ca的值。例2、已知y=ax5+bx3+cx+d,当x=0时,y=3;当x=5时,y=9。当x=5时,求y的值。提示:整体求值法,利用一个数的奇、偶次方幂的性质。例3、若14(a2+b2+c2)=(a+2b+3c)2,求a:b:c。提示:用配方法。注:配方的目的就是为了发现题中的隐含条件,以便利用有关性质来解题.例4、求证(a2+b2+c2)(m2+n2+k2)(am+bn+ck)2=(anbm)2+(bkcn)2+cmak)2提示:配方。例5、求证:2(ab)(ac)+2(bc)(ba)+2(ca)(cb)=(bc)2+(ca)2+(ab)2。提示:1、两边化简。2、左边配方。例6、设x+2z=3y,试判断x29y2+4z2+4xz的值是不是定值,如果是定值,求出它的值;否则,请说明理由。例7、已知a+b+c=3,a2+b2+c2=3,求a2002+b2002+c2002的值。例8、证明:对于任何四个连续自然数的积与1的和一定是某个整数的平方。提示:配方。例9、已知a2+b2=1,c2+d2=1,ac+bd=0,求ab+cd的值。提示:根据条件,利用1乘任何数不变进行恒等变形。例10、(1984年重庆初中竞赛题)设x、y、z为实数,且(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.求的值.例11、设a+b+c=3m,求证:(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0.