如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
数理统计学是一门应用性很强的学科.它是研究怎样以有效的方式收集、整理和分析带有随机性的数据,以便对所考察的问题作出推断和预测.数理统计的任务就是研究有效地收集、整理、分析所获得的有限的资料,对所研究的问题,尽可能地作出精确而可靠的结论.在数理统计研究中,人们往往研究有关对象的某一项(或几项)数量指标,为此,对这一指标进行随机试验,观察试验结果全部观察值,从而考察该数量指标的分布情况.这时,每个具有的数量指标的全体就是总体.每个数量指标就是个体.因此在理论上可以把总体与概率分布等同起来.例如:研究某批灯泡的寿命时,关心的数量指标就是寿命,那么,此总体就可以用随机变量X表示,或用其分布函数F(x)表示.类似地,在研究某地区中学生的营养状况时,若关心的数量指标是身高和体重,我们用X和Y分别表示身高和体重,那么此总体就可用二维随机变量(X,Y)或其联合分布函数F(x,y)来表示.参数的分布,为推断总体分布及各种特征,按一定规则从总体中抽取若干个体进行观察试验,以获得有关总体的信息,这一抽取过程称为“抽样”,所抽取的部分个体称为样本.样本中所包含的个体数目称为样本容量.一旦取定一组样本X1,…,Xn,得到n个具体的数(x1,x2,…,xn),称为样本的一次观察值,简称样本值.定义:简单随机样本是应用中最常见的情形,今后,当说到“X1,X2,…,Xn是取自某总体的样本”时,若不特别说明,就指简单随机样本.事实上我们抽样后得到的资料都是具体的、确定的值.如我们从某班大学生中抽取10人测量身高,得到10个数,它们是样本取到的值而不是样本.我们只能观察到随机变量取的值而见不到随机变量.总体(理论分布)?二、小结由样本值去推断总体情况,需要对样本值进行“加工”,这就要构造一些样本的函数,它把样本中所含的(某一方面)的信息集中起来.定义几个常见统计量它反映了总体k阶矩的信息统计量的观察值样本均值方差与总体均值方差的关系请注意:例2.经验分布函数概率论与数理统计P1091,2,6