如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
高中数学基本不等式教案设计(精品多篇)[说明]高中数学基本不等式教案设计(精品多篇)为的会员投稿推荐,但愿对你的学习工作带来帮助。高中数学教学设计篇一教学目标1、明确等差数列的定义。2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。(Ⅲ)课堂练习生:(口答)课本P118练习3(书面练习)课本P117练习1师:组织学生自评练习(同桌讨论)(Ⅳ)课时小结师:本节主要内容为:①等差数列定义。即(n≥2)②等差数列通项公式(n≥1)推导出公式:(V)课后作业一、课本P118习题3。21,2二、1、预习内容:课本P116例2P117例42、预习提纲:①如何应用等差数列的定义及通项公式解决一些相关问题?②等差数列有哪些性质?高中数学基本不等式教案设计篇二一、教材分析1、本节教材的地位和作用“基本不等式”是必修5的重点内容,在课本封面上就体现出来了(展示课本和参考书封面)。它是在学完“不等式的性质”、“不等式的解法”及“线性规划”的基础上对不等式的进一步研究。在不等式的证明和求最值过程中有着广泛的应用。求最值又是高考的热点。同时本节知识又渗透了数形结合、化归等重要数学思想,有利于培养学生良好的思维品质。2、教学目标(1)知识目标:探索基本不等式的证明过程;会用基本不等式解决最值问题。(2)能力目标:培养学生观察、试验、归纳、判断、猜想等思维能力。?(3)情感目标:培养学生严谨求实的科学态度,体会数与形的和谐统一,领略数学的应用价值,激发学生的学习兴趣和勇于探索的精神。3、教学重点、难点根据课程标准制定如下的教学重点、难点重点:应用数形结合的思想理解不等式,并从不同角度探索基本不等式。难点:基本不等式的内涵及几何意义的挖掘,用基本不等式求最值。二、教法说明本节课借助几何画板,使用多媒体辅助进行直观演示。采用启发式教学法创设问题情景,激发学生开始尝试活动。运用生活中的实际例子,让学生享受解决实际问题的乐趣。课堂上主要采取对比分析;让学生边议、边评;组织学生学、思、练。通过师生和谐对话,使情感共鸣,让学生的潜能、创造性最大限度发挥,使认知效益最大。让学生爱学、乐学、会学、学会。三、学法指导为更好的贯彻课改精神,合理的对学生进行素质教育,在教学中,始终以学生主体,教师为主导。因此我在教学中让学生从不同角度去观察、分析,指导学生解决问题,感受知识的形成过程,培养学生数形结合的意识和能力,让学生学会学习。四、教学设计◆运用2002年国际数学家大会会标引入◆运用分析法证明基本不等式◆不等式的几何解释◆基本不等式的应用1、运用2002年国际数学家大会会标引入如图,这是在北京召开的第24届国际数学家大会会标。会标根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客。(展示风车)正方形ABCD中,AE⊥BE,BF⊥CF,CG⊥DG,DH⊥AH,设AE=a,BE=b