如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
--§13.3角的平分线的性质课时安排2课时从容说课本节课通过设计一些探究活动,应用学过的全等三角形知识引出了角的平分线的性质.通过本节学习,要让学生了解已知角的平分线的作法,掌握角的平分线的两个性质:①在角的平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.并了解这两个性质的互逆性,能利用角的平分线的性质证明一些简单的几何问题,如线段相等、距离相等等问题.在应用过程中,学生习惯于应用全等解决相等问题,而常忽略角的平分线的性质的应用,这就使问题变得烦琐了.要使学生充分认识这一点,在教学中要设计丰富多彩的活动,使学生能从各个角度认识角的平分线的性质,从而达到运用自如的目的,使学生深刻体会应用角的平分线的性质的优越性.证明线段相等或等距离问题中,若有角的平分线的已知条件,可直接利用性质,不必再证明全等三角形得等量关系,这在教学中是个要突破的难点,而重点应放在角的平分线的性质的理解与应用上.§13.3.1角的平分线的性质(一)第六课时教学目标(一)教学知识点角平分线的画法.(二)能力训练要求1.应用三角形全等的知识,解释角平分线的原理.2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的过程中,培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.教学难点角的平分线的作图方法的提炼.教学方法讲练结合法.教具准备多媒体课件(或投影).教学过程Ⅰ.提出问题,创设情境问题1:三角形中有哪些重要线段.问题2:你能作出这些线段吗?[生甲]三角形中有三条重要线段,它们分别是:三角形的高,三角形的中线,三角形的角的平分线.过三角形的顶点作这个顶点的对边的垂线,交对边于一点,顶点与垂足的连线就是这个三角形的高.取三角形一边的中点,此中点与这个边对应顶点的连线就是这条边的中线.用量角器量出三角形的角的大小,量角器零度线与这个角的一边重合,这个角一半所对应的线就是这个角的角平分线.[生乙]我不同意你对角平分线的描述,三角形的角平分线是一条线段,而一个已知角的平分线是一条射线,这两个概念是有区别的.[师]你补充得很好.数学是一门严密性很强的学科,你的这种精神值得我们学习.如果老师手里只有直尺和圆规,你能帮我设计一个作角的平分线的操作方案吗?Ⅱ.导入新课[生]我记得在学直角三角形全等的条件时做过这样一个题:在∠AOB的两边OA和OB上分别取OM=ON,MC⊥OA,NC⊥OB.MC与NC交于C点.求证:∠MOC=∠NOC.通过证明Rt△MOC≌Rt△NOC,即可证明∠MOC=∠NOC,所以射线OC就是∠AOB的平分线.受这个题的启示,我们能不能这样做:在已知∠AOB的两边上分别截取OM=ON,再分别过M、N作MC⊥OA,NC⊥OB,MC与NC交于C点,连接OC,那么OC就是∠AOB的平分线了.[师]他这个方案可行吗?(学生思考、讨论后,统一思想,认为可行)[师]这位同学不仅给了操作方法,而且还讲明了操作原理.这种学以致用,联想迁移的学习方法值得大家借鉴.议一议:下图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线.你能说明它的道理吗?教师活动:播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC的方法.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC是∠DAC的平分线,其实就是证明∠CAD=∠CAB.[生2]∠CAD和∠CAB分别在△CAD和△CAB中,那么证明这两个三角形全等就可以了.[生3]我们看看条件够不够.所以△ABC≌△ADC(SSS).所以∠CAD=∠CAB.即射线AC就是∠DAB的平分线.[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.老师再提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以O为圆心,适当长为半径作弧,分别交OA、OB于M、N.(2)分别以M、N为圆心,大于MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).议一议:1.在上面作法的第二步中,去掉“大于MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB