二次函数专题三:最值问题.doc
上传人:qw****27 上传时间:2024-09-10 格式:DOC 页数:15 大小:2.2MB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

二次函数专题三:最值问题.doc

二次函数专题三:最值问题.doc

预览

免费试读已结束,剩余 5 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

二次函数专题三:最值问题一、几何最值问题引子:初中阶段学过的有关线段最小值的有两点之间线段最短和垂线段最短,无论是两点之间线段最短还是垂线段最短,它们的本质就是要线段首尾相接,或者说线段要有公共端点,如果没有公共端点,我们要想办法把它们构造成有公共端点来解决;有关线段最大值的问题,学过的有三角形三边之间的关系,两边之差小于第三边,我们可以利用这个来求第三边的最大值,还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值。几何最值模型:1、两点间距离之和最小2、两点之间距离之差绝对值最大3、线段距离之和最大(小)4、费马定理总结:共线距离最大(小)1、抛物线交x轴于A、B两点,交y轴于点C,已知抛物线的对称轴为直线x=-1,B(1,0),C(0,-3).⑴求二次函数的解析式;⑵在抛物线对称轴上是否存在一点P,使点P到A、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由.思路点拨:点P到A、C两点距离之差最大,即求|PA-PC|的最大值,因P点在对称轴上,有PA=PB,也就是求|PB-PC|,到了这儿,易知当P点是BC所在直线与对称轴的交点,易知最大值就是线段BC的长。具体解题过程略2、研究发现,二次函数()图象上任何一点到定点(0,)和到定直线的距离相等.我们把定点(0,)叫做抛物线的焦点,定直线叫做抛物线的准线.(1)写出函数图象的焦点坐标和准线方程;(2)等边三角形OAB的三个顶点都在二次函数图象上,O为坐标原点,求等边三角形的边长;(3)M为抛物线上的一个动点,F为抛物线的焦点,P(1,3)为定点,求MP+MF的最小值.思路点拨:(2)因△OAB是等边三角形,易知AB平行于X轴,且∠AOB=60°,知OA、OB于y轴的夹角等于30°,利用这点容易求出三角形的边长(3)由题目可知MF的长度等于M点到直线y=-1的距离,那么MP+MF就是P点到达抛物线上某一点再到y=-1上某一点的距离和,易知最小值就是过P点做y=-1的垂线段的长解:(1)焦点坐标为(0,1),准线方程是;(2)设等边ΔOAB的边长为x,则AD=,OD=.故A点的坐标为(,).把A点坐标代入函数,得,解得(舍去),或.∴等边三角形的边长为.(3)如图,过M作准线的垂线,垂足为N,则MN=MF.过P作准线的垂线PQ,垂足为Q,当M运动到PQ与抛物线交点位置时,MP+MF最小,最小值为PQ=4.3、思路点拨:(2)要求AE和AM的长,对于求线段的长度我们学过的是勾股定理,相似三角形和简单三角函数,从题目可知OA和OE的长以及E点到x轴的距离,我们作EG⊥x轴,垂足为G,那么容易求出OG的长,从而求出AE的长;要求AM的长,先做OK⊥AE,垂足为K,要求AM的长,首先我们利用已知的OA的长和∠EAO的函数值来求出AK和OK的长,利用OK的长和三角形OMN是等边三角形求出MK和NK的长,AM的长也就知道了(3)这个是著名的费马点的问题,第2问给了我们提示,我们可以猜想当P点在什么位置时,PA+PB+PO才能取最小值,P点应该在线段AE上,至于具体的位置我们还不知道,我们就在线段AE上任取一点P,把PA、PB、PO连起来,要取最小值,那么这三条线段应该首尾相接,我们应该能想到它们首尾相接后的位置就是AE所在直线,这时P点应该和在△OAB内的M点重合,PA的长就是AM的长,m的最小值就是AE的长解:(1)过作⊥于.---------------------------1分∵=,∴△∽△.∵点,,可得,.∵为中点,∴.∴,.∴.∴点的坐标为.-----------2分∵抛物线经过、两点,∴.可得.∴抛物线的解析式为.(2)∵抛物线与轴相交于、,在的左侧,∴点的坐标为.∴,∴在△中,,.过点作⊥于,可得△∽△.∴.∴.∴∴.∵△是等边三角形,∴.∴.∴,或.(写出一个给1分)(3)可以取到的最小值为.当取得最小值时,线段的长为.4、2009年中考第25题如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(-6,0),B(6,0),C(0,4),延长AC到点D,使,过D点作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y=kx+b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y=kx+b与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点.若P点在y轴上运动的速