如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
三位数乘两位数教案关于三位数乘两位数教案汇编六篇作为一位不辞辛劳的人民教师,就难以避免地要准备教案,编写教案有利于我们科学、合理地支配课堂时间。教案应该怎么写呢?下面是小编为大家整理的三位数乘两位数教案6篇,仅供参考,大家一起来看看吧。三位数乘两位数教案篇1教学内容教材第33、34页,三位数乘两位数的口算。教学提示本部分的教学是口算乘法,包括:整百数乘整十数、几百几十的数乘整十数。这些内容是义务教育阶段有关整数口算乘法的教学目标,它是作为小学生应该具备的口算乘法技能的基本要求。教学时,要注意为学生创设问题情境,使学生能自主学习,掌握整数乘法的一般口算方法。教学目标理解整百数乘整十数和几百几十的数乘整十数的口算算理;掌握合理的口算方法。能正确进行口算,培养思维的灵活性,促进思维条理化。过程与方法经历过口算步骤的推导,初步培养学生的类推能力;结合形式多样的练习,培养学生学习数学的兴趣,积淀数学意识。情感、态度与价值观人人参与口算,是学生养成积极动脑、认真口算的良好学习习惯。教学重点、难点教学重点:理解整百数乘整十数和几百几十的数乘整十数的口算方法。。教学难点:掌握合理的口算思考过程,正确进行口算。教学准备教师准备:多媒体学生准备:课前小研究,学习用品教学过程(一)新课导入:1.复习回顾,谈话导入10个十是()10个一百是()12个一百是()50个十是()500个十是()420个十是()20×530×64×70100×63×200500×3200×612×4学生开火车,直接说出得数。教师随机选两题,说一说口算方法。设计意图:通过复习整百数乘一位数的乘法口算,帮助学生回忆口算的方法,为新课的学习做好铺垫。2.创设情景,导入新课,出示信息窗,找出数学信息。出示情境图信息窗一,让学生欣赏图片,搜集数学信息谈话:请大家仔细欣赏图片,并要认真阅读下面的文字,看你从图中能得到哪些信息?谁能发表你的看法?学生交流自己的想法。根据信息提出问题。谈话:根据我们得到的这些数学信息,你能提出什么数学问题?学生提出问题,教师把本节课要重点解决的问题板书在黑板上。提出学习目标:同学们提的问题还真多,我们本节课重点研究这几个问题,以完成这样的学习目标。(1)整百数或整百整十数乘整十数的口算方法。(2)养成认真计算的良好学习习惯。设计意图:使学生在熟悉的情境中,激发探究的`欲望,为后面的学习做准备。(二)探究新知:自主探究,学习新知根据数学信息,提出数学问题根据你找到的数学信息,你想提出哪些数学问题?探索整百数乘整十数的口算方法(1)一组共发放了多少份宣传资料?指名学生列式:400×20(板书)得数是多少呢?(2)把你的算法在小组里互相说一说指名小组代表交流预设1:根据4×2=8,推算400×20=8000预设2:根据400×2=800,再算800×10=8000预设3:先算4×20=80,再算80×100=8000(3)比较异同,优化算法其实这几种算法都是转化为我们学习过的算式进行计算。几种算法中你最喜欢哪种算法?交流讨论,让学生发现两个因数末尾0的个数与积末尾0的个数的关系,通过对比,让学生体会到确实用添0的方法来计算这些题最简便,那添0法到底是怎么样的?让学生分小组去归纳:只要先把0前面的数相乘,然后看两个因数末尾一共有几个0,就在积的末尾加上几个0。(4)即时练习:自主练习第一题,算一算,比一比,体会算法。探索几百几十乘整十数的口算。(1)教材34页红点问题:二组一共发放了多少份宣传资料?指名列式:210×30(板书)又该怎样计算呢?(2)把你的算法在小组里互相说一说。指名小组代表交流。预设1、先算21×3=63,再推算210×30=6300预设2、先算210×3=630,再推算630×10=6300(3)优化算法:先把0前面的数相乘,然后看两个因数末尾一共有几个0,就在积的末尾加上几个0。设计意图:使学生掌握整数乘法口算的方法,体验解决问题策略的多样性。同时在对比中归纳出简便算法。(4)即时练习:自主练习第三题(三)巩固新知:自主练习1和3,直接写得数。让学生独立完成,然后讲一讲,集体订正。重点让学生说算法:怎样算?自主练习2,解决问题。学生说思路及解决问题的方法。设计意图:让学生经历从不同的角度思考可以解决问题,培养学生的发散思维,巩固本节课所学的知识。(四)达标反馈1.口算,我最棒!400×30=90×600=50×200=30×300=250×40=490×20=160×50=70×130=2.有30行苹果树,每行400棵,一共有多少棵苹果树?三位数乘两位数教案篇2学习目标1.理解三位数乘两位数的笔算原理,掌握三位数乘两位数的笔算方法,能正确进行计算。2.经历探索三位数乘两位数笔算方法的过程,能主动总结、归纳三位数乘两位数的笔算方法,培养初步