如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第十三章概率、随机变量及其分布第1讲随机事件的概率分层训练A级基础达标演练(时间:30分钟满分:60分)一、填空题(每小题5分,共30分)1.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是________.①至少有一个红球与都是红球②至少有一个红球与都是白球③至少有一个红球与至少有一个白球④恰有一个红球与恰有二个红球解析对于①中的两个事件不互斥,对于②中两个事件互斥且对立,对于③中两个事件不互斥,对于④中的两个互斥而不对立.答案④2.某城市2010年的空气质量状况如下表所示:污染指数T3060100110130140概率Peq\f(1,10)eq\f(1,6)eq\f(1,3)eq\f(7,30)eq\f(2,15)eq\f(1,30)其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染.该城市2010年空气质量达到良或优的概率为________.解析空气质量为优或良的概率为eq\f(1,10)+eq\f(1,6)+eq\f(1,3)=eq\f(3,5).答案eq\f(3,5)3.对飞机连续射击两次,每次发射一枚炮弹.设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},其中彼此互斥的事件是________,互为对立事件的是________.解析设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅.故A与B,A与C,B与C,B与D为彼此互斥事件,而B∩D=∅,B∪D=I,故B与D互为对立事件.答案A与B,A与C,B与C,B与DB与D4.(2011·南京模拟)甲、乙两人下棋,两人和棋的概率是eq\f(1,2),乙获胜的概率是eq\f(1,3),则乙不输的概率是________.解析“乙不输”包含“两人和棋”和“乙获胜”这两个事件,并且这两个事件是互斥的,故“乙不输”的概率为:eq\f(1,2)+eq\f(1,3)=eq\f(5,6).答案eq\f(5,6)5.(2012·南京调研二,3)某单位从4名应聘者A,B,C,D中招聘2人,如果这4名应聘者被录用的机会均等,则A,B两人中至少有1人被录用的概率是________.解析四人中任选2人,所有可能方式共6种,分别为:AB、AC、AD、BC、BD、CD,其中A、B中至少1人被录取的有5种方式,概率为eq\f(5,6).答案eq\f(5,6)6.(2013·南京29中月考)从1,2,3,4,5,6六个数中任取2个数,则取出的两个数不是连续自然数的概率是________.解析取出的两个数是连续自然数有5种情况,则取出的两个数不是连续自然数的概率P=1-eq\f(5,15)=eq\f(2,3).答案eq\f(2,3)二、解答题(每小题15分,共30分)7.(2011·盐城模拟)由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:排队人数012345人以上概率0.10.160.30.30.10.04求:(1)至多2人排队的概率;(2)至少2人排队的概率.解记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,A、B、C彼此互斥.(1)记“至多2人排队”为事件E,则P(E)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)记“至少2人排队”为事件D.“少于2人排队”为事件A+B,那么事件D与事件A+B是对立事件,则P(D)=1-P(A+B)=1-[P(A)+P(B)]=1-(0.1+0.16)=0.74.8.(2012·湖北卷)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX<300300≤X<700700≤X<900X≥900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.解(1)由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2,P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为Y02610P0.30.40.20.1