2021-2021学年高二数学上学期期末考试仿真模拟试卷五(江苏专用)原卷版.docx
上传人:雨巷****怡轩 上传时间:2024-09-11 格式:DOCX 页数:6 大小:311KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2021-2021学年高二数学上学期期末考试仿真模拟试卷五(江苏专用)原卷版.docx

2021-2021学年高二数学上学期期末考试仿真模拟试卷五(江苏专用)原卷版.docx

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2021-2021学年高二数学上学期期末考试仿真模拟试卷五一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题:“”的否定为()A.B.C.D.2.不等式的解集为,函数的图象大致为()A.B.C.D.3.若命题“使”是假命题,则实数的取值范围为()A.B.C.D.4.《周髀算经》中一个问题:从冬至之日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影子长依次成等差数列,若冬至、立春、春分的日影子长的和是尺,芒种的日影子长为尺,则冬至的日影子长为:()A.尺B.尺C.尺D.尺5.已知双曲线的离心率为,则双曲线的渐近线方程为()A.B.C.D.6.在正方体中,直线与平面所成角的余弦值为()A.B.C.D.7.已知椭圆的左、右焦点分别为、,点A是椭圆短轴的一个顶点,且,则椭圆的离心率()A.B.C.D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.若,则()A.B.C.D.10.双曲线C:的右焦点为F,点P在双曲线C的一条渐近线上,O为坐标原点,则下列说法正确的是()A.双曲线C的离心率为B.双曲线与双曲线C的渐近线相同C.若,则的面积为D.的最小值为211.如图,正方体的棱长为1,线段上有两个动点,,且,则下列结论中正确的是()A.线段上存在点,使得B.平面C.的面积与的面积相等D.三棱锥的体积为定值12.若数列的前项和是,且,数列满足,则下列选项正确的为()A.数列是等差数列B.C.数列的前项和为D.数列的前项和为,则三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知数列中,,,则______.14.已知,则的最小值为________.15.已知关于x的一元二次不等式的解集中有且仅有3个整数,则a的值可以是________.16.点,为椭圆:长轴的端点,、为椭圆短轴的端点,动点满足,若面积的最大值为8,面积的最小值为1,则椭圆的离心率为______.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤.17.已知集合,集合{方程表示圆锥曲线C}(1)若圆锥曲线C表示焦点在x轴上的椭圆,求实数a的取值范围;(2)若圆锥曲线C表示双曲线,且A是B的充分不必要条件,求实数a的取值范围.18.已知关于的不等式.(1)若不等式的解集为,求实数的值;(2)若不等式的解集为,求实数的取值范围.19.已知数列是公比为2的等比数列,其前n项和为,(1)在①,②,③,这三个条件中任选一个,补充到上述题干中.求数列的通项公式,并判断此时数列是否满足条件P:任意m,n,均为数列中的项,说明理由;(2)设数列满足,n,求数列的前n项和.20.如图,正方体的棱长为2,P是BC的中点,点Q是棱上的动点.(1)点Q在何位置时,直线,DC,AP交于一点,并说明理由;(2)棱上是否存在动点Q,使得与平面所成角的正弦值为,若存在指出点Q在棱上的位置,若不存在,请说明理由.20.已知双曲线C过点,且渐近线方程为,直线l与曲线C交于点M、N两点.(1)求双曲线C的方程;21.在三棱锥A—BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F—DE—C的大小为θ,求sinθ的值.22.如图,已知椭圆过点,其的左、右顶点分别是,,下、上顶点分别是,,是椭圆上第一象限内的一点,直线,的斜率,满足.(1)求椭圆的方程;(2)过点的直线交椭圆于另一点,求四边形面积的取值范围.