如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
40.(江苏省宿迁市)26.(本题满分10分)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.(1)判断P是否在线段AB上,并说明理由;(2)求△AOB的面积;(3)Q是反比例函数y=(x>0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.解:(1)点P在线段AB上,理由如下:(第26题)∵点O在⊙P上,且∠AOB=90°∴AB是⊙P的直径∴点P在线段AB上.(2)过点P作PP1⊥x轴,PP2⊥y轴,由题意可知PP1、PP2是△AOB的中位线,故S△AOB=OA×OB=×2PP1×PP2∵P是反比例函数y=(x>0)图象上的任意一点∴S△AOB=OA×OB=×2PP1×2PP2=2PP1×PP2=12.(3)如图,连接MN,则MN过点Q,且S△MON=S△AOB=12.∴OA·OB=OM·ON∴∵∠AON=∠MOB∴△AON∽△MOB∴∠OAN=∠OMB∴AN∥MB.41.(2011广东省)20.已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G。∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。(1)求证:△EGB是等腰三角形;第20题图(1)ABCEFFB(D)GGACED第20题图(2)(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小_____度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。20、(1)提示:(2)30(度)42.(广东省)22.如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段)。试问x为何值时,△PQW为直角三角形?当x在何范围时,△PQW不为直角三角形?第22题图(2)ABCDFMNWPQ(3)问当x为何值时,线段MN最短?求此时MN的值。第22题图(1)ABMCFDNWPQ22、(1)提示:∵PQ∥FN,PW∥MN∴∠QPW=∠PWF,∠PWF=∠MNF∴∠QPW=∠MNF同理可得:∠PQW=∠NFM或∠PWQ=∠NFM∴△FMN∽△QWP(2)当时,△PQW为直角三角形;当0≤x<,<x<4时,△PQW不为直角三角形。(3)43.(2011四川凉山)如图,抛物线与轴交于(,0)、(,0)两点,且,与轴交于点,其中是方程的两个根。(1)求抛物线的解析式;(2)点是线段上的一个动点,过点作∥,交于点,连接,当的面积最大时,求点的坐标;(3)点在(1)中抛物线上,点为抛物线上一动点,在轴上是否存在点,使以为顶点的四边形是平行四边形,如果存在,求出所有满足条件的点的坐标,若不存在,请说明理由。yxOBMNCA28题图28.(1)∵,∴,。∴,。·························1分又∵抛物线过点、、,故设抛物线的解析式为,将点的坐标代入,求得。∴抛物线的解析式为。················3分(2)设点的坐标为(,0),过点作轴于点(如图(1))。∵点的坐标为(,0),点的坐标为(6,0),∴,。···························4分∵,∴。yxOBMNCA图(1)H∴,∴,∴。········5分∴···············6分。∴当时,有最大值4。此时,点的坐标为(2,0)。························7分(3)∵点(4,)在抛物线上,∴当时,,yxOBEA图(2)D∴点的坐标是(4,)。如图(2),当为平行四边形的边时,,∵(4,),∴LINKWPS.Doc.6G:\\初中数学试题\\凉山州各年级统考题\\2011年凉山州中考数学试题.docOLE_LINK4\a\r\*MERGEFORMAT错误!链接无效。。∴,。·······················