自动控制原理课程总结.pdf
上传人:qw****27 上传时间:2024-09-12 格式:PDF 页数:4 大小:143KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

自动控制原理课程总结.pdf

自动控制原理课程总结.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

自动控制原理课程总结20091334023张杰作为一门电子信息类的学生,专业的培养目标就是要求我们能够设计简单的控制电路,加之自己对单片机的兴趣,因此有必要学习自动控制原理这门课程。第一节课老师的一些理念我非常的认同,比如一门课程要把握这门课的整体框架,即这门课多的灵魂所在,毕竟我们学的东西很多,如果不每天使用这些,一段很长的时间以后我们又能够记得多少呢,把握一门课的整体框架很重要;还有就是老师强调的就是要培养自己快速学习的能力,这个世界有很多东西要学,我们所处的IT行业新知识的更新速度更是飞快,以后在工作岗位上的许多知识技能都要从头开始,一个人最大的竞争优势就是能在最短的时间内掌握应有的技能……当时我就暗暗高兴,觉得选修这门课时明智之举。没有拿到书以前我所认为的子偶那个控制原理就是讲一些自动控制的某些方法,等接触到这门课程才发现这门课程用到了还多的方面的基本知识,深入了解之后才知道这门课程讲的是一些控制原理的一些原理,自动控制原理的思路,一些数学模型,以及线性系统的分析……本书的第一章对自动控制原理做了一个概述,正如老师所讲,学一门课程要先了解这门课程的整体结构,反馈的控制就是本书的重点,其基本原理是取被控量的反馈信息,用以不断地修正被控量与输入量之间的误差,从而实现对被控对象进行控制的任务。课程的主要内容包括:自动控制系统的基本组成和结构、自动控制系统的性能指标,自动控制系统的类型(连续、离散、线性、非线性等)及特点、自动控制系统的分析(时域法、频域法等)和设计方法等。这就是本书的整体框架。第二章刚开始讲的就是《信号与系统》的主要内容,傅里叶变换和拉普拉斯变换的规则和性质,这是自动控制原理的基础与基本的数学工具。在给定的最小RLC无源网络中了解了线性微分方程的建立以及控制系统微分方程的建立以及求解方法。接着是控制系统的复数域数学模型,再次加强了传递函数的概念,我们接下来研究的好多性质都是围绕传递函数进行的,这是一个很重要的概念。在控制系统的结构图和信号的流图这节中我是真正掌握了控制原理图的读图方法,解答了我以前学《信号与系统》与系统时读不懂结构图的困惑,顿时豁然开朗。方框图和信号流图的变换和化简讲了好多的性质,对我们以后读懂结构图打下的基础,其中有许多法则在这里就不列出了,毕竟这不是这篇课程总结的目的。我感觉有个梅森公式很有用,有了这个公式,我们以后在解题时就可以省去好多的不必要浪费的时间,直接套用公式就可以求出传递函数,对解大题时分析思路有很大的帮助。在确定系统的数学模型之后,我们可以用时域分析法,根轨迹法或频域分析法来分析线性系统的性能,第三章讲的就是线性系统的时域分析法,首先应掌握典型的输入输出信号,以及什么是动态和稳态过程以及它们的性能。重点是线性连续系统的动态过程分析。一阶系统的分析是指一阶微分方程作为运动方程的控制系统,需要掌握的内容是一届系统对典型输入信号的输出响应。二阶系统是指以二阶微分方程作为运动方程的控制系统,以二阶系统的单位阶跃响应为例,分别研究了欠阻尼的单位阶跃响应,临界阻尼,过阻尼二阶系统的单位阶跃响应。系统稳定性的分析,特征根必须全部分布在S平面的左半部,即具有负实部。已知系统的特征方程时,可采用Routh稳定判据或Hurwitz稳定判据判定系统的稳定性。特征多项式各项系数均大于零(或同符号)是系统稳定的必要条件。Routh判据:由特征方程各项系数列出Routh表,如果表中第一列各项严格为正,则系统稳定;第一列出现负数,则系统不稳定,且第一列各项数值符号改变的次数就是正实部特征根的数目。Hurwitz判据:由特征方程各项系数构成的各阶Hurwitz行列式全部为正,则系统稳定。劳斯稳定判据是根据所列劳斯表第一列系数符号的变化,去判别特征方程式根在S平面上的具体分布,过程如下:1如果劳斯表中第一列的系数均为正值,则其特征方程式的根都在S的左半平面,相应的系统是稳定的。2如果劳斯表中第一列系数的符号有变化,其变化的次数等于该特征方程式的根在S的右半平面上的个数,相应的系统为不稳定。之后讲的是线性系统的稳定误差分析计算,主要讨论了线性控制系统由于系统结构,输入作用形式和类型所产生的稳态误差,其中包含有系统类型域稳态误差的关系,同时介绍定量描述系统误差的静态误差系数法。第四章就讨论了线性系统分析方法的根轨迹法,由于是图解方法,所以使用起来更加简便,所谓根轨迹就是指开环系统某一参数从零到无穷时,闭环系统特征方程的根在S平面上变化的轨迹。首先我们应先根据闭环传递函数方程求出特征方程的根,然后令开环增益K从零开始到无穷,利用数学上的解析方法求解出闭环节点的全部数值,将这些数值标注在S平面上