新疆维吾尔自治区2019届高三第三次毕业诊断及模拟测试理科数学试题 WORD版含解析.doc
上传人:春兰****89 上传时间:2024-09-12 格式:DOC 页数:23 大小:5.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

新疆维吾尔自治区2019届高三第三次毕业诊断及模拟测试理科数学试题 WORD版含解析.doc

新疆维吾尔自治区2019届高三第三次毕业诊断及模拟测试理科数学试题WORD版含解析.doc

预览

免费试读已结束,剩余 13 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2019届新疆维吾尔自治区高三年级第三次毕业诊断及模拟测试理科数学试题一、选择题:在每小题给出的四个选项中,只有一项符合题目要求的.1.()A.iB.-iC.0D.1【答案】B【解析】【分析】利用复数的除法运算,即得解.【详解】化简:故选:B【点睛】本题考查了复数的除法运算,考查了学生概念理解,数学运算的能力,属于基础题.2.已知集合,集合,那么集合()A.B.C.D.【答案】D【解析】【分析】由交集的定义即得解.【详解】集合,集合,由交集的定义:故选:D【点睛】本题考查了集合交集的运算,考查了学生概念理解,数学运算的能力,属于基础题.3.双曲线的离心率为()A.B.C.D.【答案】D【解析】【分析】由双曲线,求得,再由离心率的公式,即可求解.【详解】由双曲线,可得,则,所以双曲线的离心率为,故选D.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质求解,其中解答中熟记双曲线的标准方程,以及双曲线的几何性质,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.已知数列是等差数列,,其前5项和,则为()A.14B.15C.11D.24【答案】C【解析】【分析】由等差中项,可求得,前n项和公式可求得,可得解d,即得解.【详解】数列是等差数列,,故选:C【点睛】本题考查了等差数列的性质及前n项和,考查了学生概念理解,转化划归,数学运算的能力,属于基础题.5.运行如图所示的程序框图若输出的s的值为55则在内应填入()A.B.C.D.【答案】C【解析】【分析】根据程序框图的循环条件,依次计算,即得解【详解】初始:;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足输出条件;故选:C【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算能力,属于中档题.6.函数图象可能为()A.B.C.D.【答案】A【解析】【分析】由函数定义域,函数为奇函数,,结合分析即得解.【详解】函数定义域:,在无定义,排除C,由于,故函数为奇函数,关于原点对称,排除B,且,故排除D故选:A【点睛】本题考查了由函数解析式研究函数性质辨别函数图像,考查了学生综合分析,数形结合的能力,属于中档题.7.已知,则的值为()A.B.C.D.【答案】B【解析】【分析】利用诱导公式,以及二倍角公式,即得解.【详解】由诱导公式:,再由二倍角公式:故选:B【点睛】本题考查了诱导公式,二倍角公式综合应用,考查了学生概念理解,转化划归,数学运算的能力,属于基础题.8.已知等比数列的各项均为正数,且,则()A.6B.9C.18D.81【答案】C【解析】【分析】由对数运算律:,可得解,由等比中项的性质,,即得解.详解】由于由等比中项的性质,故选:C【点睛】本题考查了等比数列的性质,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.9.若展开式的常数项等于-80,则()A.-2B.2C.-4D.4【答案】A【解析】【分析】用展开式中的常数项(此式中没有此项)乘以2加上展开式中的系数乘以1即得已知式展开式的常数项.【详解】由题意,解得.故选A.【点睛】本题考查二项式定理,解题关键是掌握二项展开式的通项公式,同时掌握多项式乘法法则.10.已知抛物线的焦点为F准线为1,P是l上一点,Q是直线PF与C的一个交点,且Q位于第四象限,过Q作l的垂线QE,垂足为E,若PF的倾斜角为60°,则的面积是()A.B.C.D.【答案】A【解析】【分析】表示PF方程为,与抛物线方程联立,求解Q点坐标,求解面积.【详解】由已知条件抛物线准线为,焦点为,直线PF倾斜角为60°,故斜率,方程为:代入抛物线方程可得:解得:由于Q在第四象限故选:A【点睛】本题考查了直线和抛物线综合,考查了学生转化划归,数学运算的能力,属于中档题.11.某几何体的三视图如图所示,网格纸上的小正方形边长为1,则此几何体的外接球的表面积为()A.B.C.D.【答案】B【解析】【分析】由三视图可还原得到三棱锥,三棱锥可放在如图底面边长为2,侧棱长为4的正四棱柱中,E,F为棱中点,设O为三棱锥外接球的球心,分别为点Q在平面ABCD,平面ECD的投影.由于都为等腰三角形,故分别在中线FG,EG上.构造直角三角形可求解得到,结合即得解.【详解】由题设中的三视图,可得该几何体为如下图所示的三棱锥,放在底面边长为2,侧棱长为4的正四棱柱中
立即下载