微分方程建模.ppt
上传人:sy****28 上传时间:2024-09-12 格式:PPT 页数:54 大小:2.4MB 金币:16 举报 版权申诉
预览加载中,请您耐心等待几秒...

微分方程建模.ppt

微分方程建模.ppt

预览

免费试读已结束,剩余 44 页请下载文档后查看

16 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第四章微分方程建模例1(理想单摆运动)建立理想单摆运动满足的微分方程,并得出理想单摆运动的周期公式。例2一个半径为Rcm的半球形容器内开始时盛满了水,但由于其底部一个面积为Scm2的小孔在t=0时刻被打开,水被不断放出。问:容器中的水被放完总共需要多少时间?为了保持自然资料的合理开发与利用,人类必须保持并控制生态平衡,甚至必须控制人类自身的增长。本节将建立几个简单的单种群增长模型,以简略分析一下这方面的问题。一般生态系统的分析可以通过一些简单模型的复合来研究,大家若有兴趣可以根据生态系统的特征自行建立相应的模型。模型1马尔萨斯(Malthus)模型模型检验模型2Logistic模型图4-5模型检验Malthus模型和Logistic模型的总结例5新产品的推广容易看出,x’(t)>0,即x(t)单调增加。§4.3药物在体内的分布药物的分解与排泄(输出)速率通常被认为是与药物当前的浓度成正比的,即:情况1快速静脉注射情况2恒速静脉点滴情况3口服药或肌注图4-9给出了上述三种情况下体内血药浓度的变化曲线。容易看出,快速静脉注射能使血药浓度立即达到峰值,常用于急救等紧急情况;口服、肌注与点滴也有一定的差异,主要表现在血药浓度的峰值出现在不同的时刻,血药的有效浓度保持时间也不尽相同,(注:为达到治疗目的,血药浓度应达到某一有效浓度,并使之维持一特定的时间长度)。新药品、新疫苗在临床应用前必须经过较长时间的基础研究、小量试制、中间试验、专业机构评审及临床研究。当一种新药品、新疫苗研制出来后,研究人员必须用大量实验搞清它是否真的有用,如何使用才能发挥最大效用,提供给医生治病时参考。在实验中研究人员要测定模型中的各种参数,搞清血药浓度的变化规律,根据疾病的特点找出最佳治疗方案(包括给药方式、最佳剂量、给药间隔时间及给药次数等),这些研究与试验据估计最少也需要数年时间。在2003年春夏之交的SARS(非典)流行期内,有些人希望医药部门能赶快拿出一种能治疗SARS的良药或预防SARS的有效疫苗来,但这只能是一种空想。SARS的突如其来,形成了“外行不懂、内行陌生”的情况。国内权威机构一度曾认为这是“衣原体”引起的肺炎,可以用抗生素控制和治疗。但事实上,抗生素类药物对SARS的控制与治疗丝毫不起作用。以钟南山院士为首的广东省专家并不迷信权威,坚持认为SARS是病毒感染引起的肺炎,两个月后(4月16日),世界卫生组织正式确认SARS是冠状病毒的一个变种引起的非典型性肺炎(注:这种确认并非是由权威机构定义的,而是经对猩猩的多次实验证实的)。发现病原体尚且如此不易,要攻克难关,找到治疗、预防的办法当然就更困难了,企图几个月解决问题注定只能是一种不切实际的幻想。上述研究是将机体看成一个均匀分布的同质单元,故被称单房室模型,但机体事实上并不是这样。药物进入血液,通过血液循环药物被带到身体的各个部位,又通过交换进入各个器官。因此,要建立更接近实际情况的数学模型就必须正视机体部位之间的差异及相互之间的关联关系,这就需要多房室系统模型。§4.4传染病模型设某地区共有n+1人,最初时刻共有i人得病,t时刻已感染(infective)的病人数为i(t),假定每一已感染者在单位时间内将疾病传播给k个人(k称为该疾病的传染强度),且设此疾病既不导致死亡也不会康复模型2infectiveinfective综上所述,模型3指出了传染病的以下特征:通常情况下,传染病波及的人数占总人数的百分比不会太大,故一般是小量。利用泰勒公式展开取前三项,有:曲线§4.5捕食系统的Volterra方程Volterra将鱼划分为两类。一类为食用鱼(食饵),数量记为x1(t),另一类为食肉鱼(捕食者),数量记为x2(t),并建立双房室系统模型。对于捕食者(Predator)系统:2、模型分析解释D’Ancona发现的现象P-P模型导出的结果虽非绝对直理,但在一定程度上是附合客观实际的,有着广泛的应用前景。例如,当农作物发生病虫害时,不要随随便便地使用杀虫剂,因为杀虫剂在杀死害虫的同时也可能杀死这些害虫的天敌,(害虫与其天敌构成一个双种群捕食系统),这样一来,使用杀虫剂的结果会适得其反,害虫更加猖獗了。§4.6较一般的双种群生态系统一般的双种群系统(4.33)式的一些说明对于一般的生态系统,如果通过求解的微分方程来讨论常常会遇到困难。在研究实际课题时,数值解方法也许会用得更多。当解析解无法求得时,计算机作为强大的辅助工具发挥了它应起的作用。研究1999年美国大学生数学建模竞赛题A(小行星撞击地球)时就遇到了一个棘手的问题:如何描述南极地区的生态系统,如何定量化地研究小行星撞击地球对南级生态环境的影响?在上网查阅了南极附近的海洋生态状况后,可将南极附近的生物划分成三个部分:海藻、鳞虾和其他海洋生物