随机过程的数字特征.ppt
上传人:天马****23 上传时间:2024-09-11 格式:PPT 页数:20 大小:1.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

随机过程的数字特征.ppt

随机过程的数字特征.ppt

预览

免费试读已结束,剩余 10 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

怎么办呢?事实上,在许多实际应用中,当随机过程的“函数关系”不好确定时,我们往往可以退而求其次,像引入随机变量的数字特征一样,引入随机过程的数字特征。用这些数字特征我们认为基本上能刻划随机过程变化的重要统计规律,而且用随机过程的X(t)的数字特征,又便于运算和实际测量。显然,对于随机变量X,它的的数字特征我们主要介绍了数学期望、方差、相关函数来描述随机过程X(t)的主要统计特性。例7.1设随机变量X具有概率密度§7.1随机过程X(t)的数学期望§7.2随机过程的均匀方值与方差定义随机过程的标准离差:注:随机过程的标准差是表示了随机过程在t时刻偏离均值的程度大小,如图2.2所示。§7.3随机过程的自相关函数对于这两个随机过程,从直观上讲,它们都具有大致相同的数学期望和方差,但两个过程的内部结构却有着非常明显的差别,其中X(t)随机时间变化缓慢,这个过程在两个不同的时刻的状态之间有着较强的相关性,而过程Y(t)的变化要急剧得多,其不同时刻的状态之间的相关性,显然很弱。怎样去研究和反映一个随机过程在不同时刻的内在联系呢?为此我们引入自相关函数(简称相关函数)来描述随机过程在两个不同时刻状态之间的内在联系。定义随机过程的自相关函数:这就是随机过程X(t)在两个不同时刻的状态之间的混合原点矩,自相关函数就反映了X(t)在两个不同时刻的状态之间的相关程度。若在定义式中取,则有此时自相关函数即为均方值。式中,为过程X(t)的二维概率密度函数。例2.2求随机相位正弦波过程的均值、方差和自相关函数,其中的概率密度为例7.3给定随机过程,式中是常数,A和B是两个独立的正态随机变量,而且,试求X(t)的均值和自相关函数。定义协方差函数:称为随机过程X(t)的协方差函数。由定义可知,当取∴此时的协方差就是方差。注意,实际上自相关函数所描述的特性是几乎一致的。性质2.1证∵从上式分析可知,随机过程的协方差函数与其自相关函数只差一个统计平均值,特别当随机过程的任意时刻数学期望时,二者完全相同。§7.4两个随机过程之间的互相关函数定义互协方差函数:称为两个随机过程的互协方差函数。性质2.2在上式中,若对任意都有则称X(t),Y(t)为正交过程,此时在上式中,若,又称X(t),Y(t)互不相关;此时推论:若两个随机独立,则它们必不相关。反之,两个随机过程不相关,还不能断言它们的相互独立。(除非是正态过程)。注:自相关函数、互相关函数、协议差函数其结果是数,而不再是一个过程。习题3.已知随机过程X(t)的均值和协方差函数是普通函数,试求随机过程是普通函数,试求随机过程的均值和协方差函数。4.设,其中A,B是相互独立且服从同一高斯(正态)分布的随机变量,a为常数,试求X(t)的值与相关函数。