如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第二章精密机械零件受力变形与应力分析§1精密机械零件的强度与刚度外力及其分类绝大多数物体的变形被限制在弹性范围内,这时的物体被成为弹性体。内力:杆件受外力作用发生变形时,其内部分子间同时产生一种力图恢复到变形前的形状和尺寸的抵抗力。内力与外力互相对立,互相依存,同时出现,同时消失。内力求取方法—截面法应力():横截面单位面积上的内力。>0,拉应力;<0,压应力;沿轴线方向的内力FN称为轴力,使杆件产生轴向伸长或缩短;与横截面相切的内力FSy和FSz称为剪力,使相邻横截面产生相对错动;绕x轴的力偶Mx称为扭矩,使各横截面产生绕轴线的相对转动;绕y轴和z轴的力偶My和Mz称为弯矩,使杆件分别产生xz平面内和xy平面内的弯曲变形。由于杆件是平衡的,它的任一部分也是平衡的。内力和内力偶与作用在该杆段上的外力构成平衡力系。由平衡方程由于内力总是与外力平衡,所以计算应力时,可直接用外力大小来计算,即二.强度计算强度条件在设计中可用于解决三类问题:截面积的计算强度校核3.许用负荷的确定§3机械零件的剪切铆钉联接:剪应力的大小可用下式求出:式中A——受剪面面积为了使联接件不被剪断,应使其工作时的剪切应力小于或等于材料的许用剪切应力,故剪切强度条件为:二.剪切的强度计算汽车中的转向轴圆轴扭转变形特征转动轴的受力特点是:作用于其上的外力是一对转向相反、作用面与杆件横截面平行的外力偶矩。杆件变形的特点是:杆的任意两个横截面围绕轴线作相对转动。杆件的这种变形称为扭转。由平衡方程推论一:圆轴扭转时横截面上只有垂直于半径方向的剪应力,而无正应力。在弹性范围内,剪应力与剪应变之间的关系符合虎克定律在截面上距圆心处取微面积dA,其上的微内力为,因与半径垂直,该微内力对圆心的矩为,截面上所有微力矩的合力矩,即微力矩在整个横截面上的积分,应该是截面上的扭矩Mn,即:式中——横截面上距轴心为处的切应力;——圆轴横截面上的扭矩;——横截面上所求切应力的点到轴心的距离;——横截面的极惯性矩。圆轴扭转时横截面上切应力的计算公式,最大切应力发生在距轴心最远的圆截面的边缘.即:二.扭转强度和刚度计算1.扭转强度条件圆轴扭转时,要保证其正常工作,必须使最大剪切应力不超过许用剪切应力,即扭转强度条件为:塑性材料脆性材料2.扭转刚度条件工程上,对受扭圆轴的刚度要求,通常是限制轴的单位长度扭转角的最大值,所谓单位长度扭转角度就是:则轴的扭转刚度条件为:工程上习惯采用°/m为单位长度扭转角的单位,刚度条件可表示成:与杆的拉压、轴的扭转一样,弯曲是又一种形式的基本变形。承受弯曲作用的杆,称之为梁。梁类零件的类型简支梁、外伸梁和悬臂梁二.梁类零件弯曲时的内力与应力1.弯曲时的内力以吊车横梁为例分析梁弯曲时的内力如图所示:2.弯曲时的应力取一矩形截面纯弯曲梁段进行研究。加载前,在梁表面画上纵横直线。梁受弯变形后,可观察到如下现象:①横向直线变形后仍为直线,只是各横向线间存在相对转动,但仍与变形后的纵向线正交。②纵向线都变为弧线,位于中间位置的纵向线长度不变,靠底面的纵向线伸长,而靠顶面的纵向线却缩短。可作出如下假设:①平面假设:梁变形后的横截面仍保持平面,且与变形后的梁轴线正交。②纵向纤维无挤压假设:纵向纤维的变形只是简单的拉伸或压缩变形。根据单向受力状态的胡克定律,当应力不超过材料的比例极限时,横截面上距中性轴y处的正应力:研究梁弯曲变形的基本公式:由此可见,在相同弯矩下,EIz值越大,梁的弯曲程度就越小,所以EIz称为梁的抗弯刚度。式中M——横截面上的弯矩;Iz——横截面对中性轴z的惯性矩;y——所求应力的点到中性轴z的距离。梁处于横力弯曲状态时,其最大正应力将发生在内力弯矩绝对值最大的截面上下边缘处,其值为:令,则上式写成:其中,Wz称为梁的抗弯截面模量,单位为m3或mm3,与横截面尺寸、形状有关的几何量。三.梁类零件弯曲的强度计算对于受弯曲的梁类零件,为了保证其安全工作,危险截面上的最大弯曲应力应小于等于材料的许用弯曲应力,故弯曲强度条件为:对于抗拉与抗压强度不同的材料,则应按照抗拉和抗压分别建立强度条件,即: