如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
人教版八年级上册数学压轴题试卷及答案一、压轴题1.在△ABC中,已知∠A=α.(1)如图1,∠ABC、∠ACB的平分线相交于点D.求∠BDC的大小(用含α的代数式表示);(2)如图2,若∠ABC的平分线与∠ACE的平分线交于点F,求∠BFC的大小(用含α的代数式表示);(3)在(2)的条件下,将△FBC以直线BC为对称轴翻折得到△GBC,∠GBC的平分线与∠GCB的平分线交于点M(如图3),求∠BMC的度数(用含α的代数式表示).2.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,,为折痕,折叠后的点落在或的延长线上,那么的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,点与点重合,,为折痕,折叠后的点落在或的延长线上,那么的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,,为折痕,折叠后的点落在或的延长线上左侧,且,求的度数;②把一张长方形的纸片按如图④所示的方式折叠,点与点重合,,为折痕,折叠后的点落在或的延长线右侧,且,求的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,,为折痕,设,,,求,,之间的数量关系.3.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.4.如图,若要判定纸带两条边线a,b是否互相平行,我们可以采用将纸条沿AB折叠的方式来进行探究.(1)如图1,展开后,测得,则可判定a//b,请写出判定的依据_________;(2)如图2,若要使a//b,则与应该满足的关系是_________;(3)如图3,纸带两条边线a,b互相平行,折叠后的边线b与a交于点C,若将纸带沿(,分别在边线a,b上)再次折叠,折叠后的边线b与a交于点,AB//,,求出的长.5.如图(1),AB=4,AC⊥AB,BD⊥AB,AC=BD=3.点P在线段AB上以1的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为(s).(1)若点Q的运动速度与点P的运动速度相等,当=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为,是否存在实数,使得△ACP与△BPQ全等?若存在,求出相应的、的值;若不存在,请说明理由.6.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.7.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.①请直接写出∠AEB的度数为_____;②试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E在同-直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.8.问题背景:(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系