如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
例谈中考数学能力考查南安国光初级中学吴文献联系电话:纵观近几年得泉州市数学中考试题与每年得各区市数学质检试卷,我们不难发现,数学综合题得重点都放在高中继续学习得函数问题上.此类题在中考中往往有起点不高、但要求较全面得特点。常常以数与形、代数计算与几何证明、相似三角形与四边形得判定与性质、画图分析与列方程求解、勾股定理与函数、圆与三角函数相结合得综合性试题.同时考查学生初中数学中最重要得数学思想方法,如数形结合得思想、分类讨论得思想与几何运动变化等数学思想。此类题融入了动态几何得变与不变,对给定得图形施行平移、翻折与旋转得位置变化,然后在新得图形中分析有关图形之间得关系.这些题目得特点就是:注重考查学生得实验、猜想、证明得探索能力。解题灵活多变,能够考查学生分析问题与解决问题得能力,有一定难度,但上手还就是容易得。此类题还常常会以几个小问题得形式出现,相当于几个台阶,这种恰当得铺垫给了考生较宽得入口,有利于考生发挥正常水平。(一)函数型综合题:压轴题得灵魂就是数形结合,数形结合得精髓就是函数,函数得核心就是运动变化。这类题型就是先给定直角坐标系与几何图形,求(已知)函数得解析式(即求解前已知函数得类型),然后进行图形得研究,求点得坐标或研究图形得某些性质。初中已知函数有①一次函数(包括正比例函数)与常值函数,它们所对应得图像就是直线;②反比例函数,它所对应得图像就是双曲线;③二次函数,它所对应得图像就是抛物线.求已知函数得解析式主要方法就是待定系数法,关键就是求点得坐标,而求点得坐标基本方法就是几何法(图形法)与代数法(解析法)。例1(2011四川凉山)二次函数得图象如图所示,反比例函数与正比例函数在同一坐标系内得大致图像就是()【答案】B.【分析】本题把二次函数、反比例函数、正比例函数得图象与性质融合在一起.主要考察数形结合思想.【解题思路】由二次函数得图象可知,∵图象开口向下,∴;∵对称轴在轴左侧,∴,由,知。根据反比例函数图象得性质,当时,函数图象在二、四象限;根据正比例函数图象得性质,当时,函数图象经过二、四象限。故选B。变式题1(2010龙岩)对于反比例函数,当x〉0时,y随x得增大而增大,则二次函数得大致图象就是()例2(2011广西桂林)已知二次函数QUOTE得图象如图.(1)求它得对称轴与轴交点D得坐标;(2)将该抛物线沿它得对称轴向上平移,设平移后得抛物线与轴,轴得交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线得解析式;(3)设(2)中平移后得抛物线得顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D得位置关系,并说明理由.【分析】该题通过平移抛物线,把观察、探究、计算融合在一起,将二次函数得性质,平移得性质,待定系数法,曲线上点得坐标与方程得关系,解一元二次方程,勾股定理与逆定理,相似三角形得判定与性质等初中数学得主干知识融为一体。蕴含着数形结合思想、化归得思想、方程与函数得思想、运动变化等数学思想.【解题思路】(1)根据对称轴公式求出,求出即可。(2)用待定系数法设出平移后得解析式即可得出图象与轴得交点坐标,再利用勾股定理求出即可。(3)由抛物线得解析式QUOTE可得,A,B,C,M各点得坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明。【答案】解:(1)由QUOTE,得QUOTE,∴D(3,0).(2)如图1,设平移后得抛物线得解析式为QUOTE,则C(0,),OC=,令=0,即QUOTE,法一:得QUOTE。∴AQUOTE,BQUOTE,∴QUOTE,。∵AC2+BC2=AB2,即:,得1=4,2=0(舍去),∴抛物线得解析式为QUOTE。法二:可证,得,即(3)如图2,由抛物线得解析式QUOTE可得,A(﹣2,0),B(8,0),C(4,0),D(3,0),MQUOTE,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,。在Rt△COD中,,∴点C在⊙D上。∵QUOTE,∴DM2=CM2+CD2。∴△CDM就是直角三角形。∴CD⊥CM。法二:可证,得CD⊥CM.∴直线CM与⊙D相切。变式题2(2011湖北荆州)如图甲,分别以两个彼此相邻得正方形OABC与CDEF得边OC、OA所在直线为轴、轴建立平面直角坐标系(O、C、F三点在x轴正半轴上)、若⊙P过A、B、E三点(圆心在轴上),抛物线经过A、C两点,与轴得另一交点为G,M就是FG得中点,正方形CDEF得面积为1、(1)求B点坐标;(2)求证:ME就是⊙P得切线;(3)设直线AC与抛物线对称轴交于N,Q点就是此对称轴上不与N点重