学年上海七宝中学高二月考(2023.9)数学试卷及答案.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:13 大小:1.8MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

学年上海七宝中学高二月考(2023.9)数学试卷及答案.pdf

学年上海七宝中学高二月考(2023.9)数学试卷及答案.pdf

预览

免费试读已结束,剩余 3 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

七宝中学2023学年第一学期高二年级数学月考2023.10一、填空题(4*6+5*6=54分)1.若直线a平行于平面内的直线b,且a,则a与的位置关系是__________.2.已知tan3,则cos2________.3.已知z2i,则2iz_________.4.过ABC所在平面外一点P,作PO,垂足为O,连接PA,PB,PC,若PAPBPC,则点O是ABC的______心.5.正方体ABCDABCD的棱长为a,则B到平面BCA的距离为________.11111116.已知ab2,a,b,则ab在a上的数量投影为___________.37.已知平面经过原点O,且法向量为n2,1,2,点P1,2,3,则点P到平面的距离为________.8.已知圆锥的底面半径为3,母线长为2,过该圆锥的顶点作圆锥的截面,则截面面积的最大值为_________.9.如图,圆锥OP的底面直径和高均是1,过OP上一点O'作平行于底面的截面,以该截面为底面挖去一个圆柱,则该圆柱侧面积的最大值为_________.(第9题)(第10题)10.如图,在棱长为2的正方体ABCDABCD中,E为BC的中点,点P在线段DE上,11111点P到直线CC的距离的最小值为__________.1111.二面角l的大小为60,其内一点P到,的距离分别为1和2,则P到棱l的距离为__________.12.在四面体PABC中,ABC是边长为2的等边三角形,PA平面ABC,且PA1,动点M,N分别在线段PA(含端点)上和PBC所在平面中运动,满足MN1.记ABC的外心为O,则ON的最大值是__________.二、选择题(4*2+5*2=18分)13.空间中有三条直线a,b,c,则“a,b,c两两相交”是“a,b,c共面”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.已知0a1,b1,则函数yaxb的图像必定不经过()A.第一象限B.第二象限C.第三象限D.第四象限15.已知平面平面,l,直线a在平面内,直线b在平面内,且a,b与l均不垂直,则()A.a与b可能垂直,但不可能平行B.a与b可能垂直也可能平行C.a与b不可能垂直,但可能平行D.a与b不可能垂直,也不可能平行16.已知矩形ABCD,M是边AD上一点,沿BM翻折ABM,使得平面ABM平面BCDM,记二面角ABCD的大小为,二面角ADMC的大小为,则()A.B.C.D.222三、解答题(14+14+14+18+18=78分)axb17.已知定义在上的函数fx为偶函数,且f01.1x2(1)求yfx的解析式;(2)判断并用单调性定义证明yfx在0,的单调性.18.在四棱锥PABCD中,底面正方形ABCD的边长为2,PA底面ABCD,E为BC2的中点,PC与平面PAD所成的角为arctan.2(1)求PA的长度;(2)求异面直线AE与PD所成角的大小.(结果用反三角函数表示)319.某广场内设置了一些石凳供大家休息,这些石凳是由正方体截去八个一样的四面体得到的,如图所示,若被截正方体的棱长是60cm.(1)求石凳的体积;(2)为了美观工人准备将石凳的表面进行粉刷,已知每平方米造价50元,请问粉刷一个石凳需要多少钱?(精确到0.1元)20.如图,已知四边形PDCE为矩形,ABCD为梯形,平面PDCE平面ABCD,1BADADC90,ABADCD1,PD2.2(1)若M为PA中点,求证:AC//平面MDE;(2)求直线PA与平面PBC所成角的正弦值;(3)在线段PC上是否存在一点Q(除去端点),使得平面QAD与平面PBC所成锐二面角PQ的大小为?若存在,求出的值;若不存在,请说明理由.3PC421.已知完全封闭且内部中空的圆柱底面的半径为R,母线长为l.(1)当R1,l2时,在圆柱内放一个半径为1的实心球,求圆柱内空余部分的体积;(结果用精确值表示)(2)如图,当R1,l12时,平面与圆柱的底面所成锐二面角为45,且平面只与圆柱的侧面相交,设平面