如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
二面角大小的求法典例二面角的类型和求法可用框图展现如下:一、定义法:例1(2009全国卷Ⅰ理)如图,四棱锥中,底面为矩形,底面,,点M在侧棱上,=60°(I)证明:M在侧棱的中点(II)求二面角的大小。FG解(II):利用二面角的定义。在等边三角形中过点作交于点,则点为AM的中点,过F点在平面ASM内作,GF交AS于G,连结AC,∵△ADC≌△ADS,∴AS-AC,且M是SC的中点,∴AM⊥SC,GF⊥AM,∴GF∥AS,又∵为AM的中点,∴GF是△AMS的中位线,点G是AS的中点。则即为所求二面角.∵,则,又∵,∴∵,∴△是等边三角形,∴FG在△中,,,,∴∴二面角的大小为练习1(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC,PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。(答案:二面角的余弦值为)直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;POBA例、如图,已知二面角α-а-β等于120°,PA⊥α,A∈α,PB⊥β,B∈β.求∠APB的大小.例、在四棱锥P-ABCD中,ABCD是正方形,PA⊥平面ABCD,PA=AB=a,求二面角B-PC-D的大小。二、三垂线定理法:例2.(2009山东卷理)如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB//CD,AB=4,BC=CD=2,AA=2,E、E、F分别是棱AD、AA、AB的中点。证明:直线EE//平面FCC;(2)求二面角B-FC-C的余弦值。解EABCFE1A1B1C1D1DF1OP(2)因为AB=4,BC=CD=2,、F是棱AB的中点,所以BF=BC=CF,△BCF为正三角形,取CF的中点O,则OB⊥CF,又因为直四棱柱ABCD-ABCD中,CC1⊥平面ABCD,所以CC1⊥BO,所以OB⊥平面CC1F,过O在平面CC1F内作OP⊥C1F,垂足为P,连接BP,则∠OPB为二面角B-FC-C的一个平面角,在△BCF为正三角形中,,在Rt△CC1F中,△OPF∽△CC1F,∵∴,在Rt△OPF中,,,所以二面角B-FC-C的余弦值为.练习2(2008天津)如图,在四棱锥中,底面是矩形.已知.(Ⅰ)证明平面;(Ⅱ)求异面直线与所成的角的大小;(Ⅲ)求二面角的大小.分析:本题是一道典型的利用三垂线定理求二面角问题,在证明AD⊥平面PAB后,容易发现平面PAB⊥平面ABCD,点P就是二面角P-BD-A的半平面上的一个点,于是可过点P作棱BD的垂线,再作平面ABCD的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。(答案:二面角的大小为)已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD中,ABCD是平行四边形,PA⊥平面ABCD,PA=AB=a,∠ABC=30°,求二面角P-BC-A的大小。ABCDA1B1C1D1EO例、(2003北京春)如图,ABCD-A1B1C1D1是长方体,侧棱AA1长为1,底面为正方体且边长为2,E是棱BC的中点,求面C1DE与面CDE所成二面角的正切值.例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小CDPMBA图4B1AA1BLEF例、(2006年陕西试题)如图4,平面⊥平面,∩=l,A∈,B∈,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=eq\r(2),求:二面角A1-AB-B1的大小.三、垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个半平面的交线所成的角即为平面角,由此可知,二面角的平面角所在的平面与棱垂直;PlCBA例、空间的点P到二面角的面、及棱l的距离分别为4、3、,求二面角的大小.四、射影法:(面积法)利用面积射影公式S射=S原co