高中数学直线方程知识点总结2021.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:4 大小:176KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

高中数学直线方程知识点总结2021.pdf

高中数学直线方程知识点总结2021.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学直线方程知识点总结2021有些学生认为文科需要背诵的知识点太多,而在高考中基础知识题的分值不高,所以索性就放弃了。他们不知道解决好基础知识,正是提高文科成绩的关键所在。下面是小编为大家整理的有关高中最全数学知识点总结汇总,希望对你们有帮助!高中数学直线方程知识点总结1:一般式:Ax+By+C=0(A、B不同时为0)适用于所有直线K=-A/B,b=-C/BA1/A2=B1/B2≠C1/C2←→两直线平行A1/A2=B1/B2=C1/C2←→两直线重合横截距a=-C/A纵截距b=-C/B2:点斜式:y-y0=k(x-x0)适用于不垂直于x轴的直线表示斜率为k,且过(x0,y0)的直线3:截距式:x/a+y/b=1适用于不过原点或不垂直于x轴、y轴的直线表示与x轴、y轴相交,且x轴截距为a,y轴截距为b的直线4:斜截式:y=kx+b适用于不垂直于x轴的直线表示斜率为k且y轴截距为b的直线5:两点式:适用于不垂直于x轴、y轴的直线表示过(x1,y1)和(x2,y2)的直线(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)6:交点式:f1(x,y)m+f2(x,y)=0适用于任何直线表示过直线f1(x,y)=0与直线f2(x,y)=0的交点的直线7:点平式:f(x,y)-f(x0,y0)=0适用于任何直线表示过点(x0,y0)且与直线f(x,y)=0平行的直线8:法线式:x·cosα+ysinα-p=0适用于不平行于坐标轴的直线过原点向直线做一条的垂线段,该垂线段所在直线的倾斜角为α,p是该线段的长度9:点向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)适用于任何直线表示过点(x0,y0)且方向向量为(u,v)的直线10:法向式:a(x-x0)+b(y-y0)=0适用于任何直线表示过点(x0,y0)且与向量(a,b)垂直的直线11:点到直线距离点P(x0,y0)到直线Ι:Ax+By+C=0的距离d=|Ax0+By0+C|/√A2+B2两平行线之间距离若两平行直线的方程分别为:Ax+By+C1=OAx+By+C2=0则这两条平行直线间的距离d为:d=丨C1-C2丨/√(A2+B2)12:各种不同形式的直线方程的局限性:(1)点斜式和斜截式都不能表示斜率不存在的直线;(2)两点式不能表示与坐标轴平行的直线;(3)截距式不能表示与坐标轴平行或过原点的直线;(4)直线方程的一般式中系数A、B不能同时为零.13:位置关系若直线L1:A1x+B1y+C1=0与直线L2:A2x+B2y+C2=01.当A1B2-A2B1≠0时,相交2.A1/A2=B1/B2≠C1/C2,平行3.A1/A2=B1/B2=C1/C2,重合4.A1A2+B1B2=0,垂直高中文科数学知识点考点一:集合与简易逻辑集合部分一般以选择题出现,属容易题。重点考查集合间关系的理解和认识。近年的试题加强了对集合计算化简能力的考查,并向无限集发展,考查抽象思维能力。在解决这些问题时,要注意利用几何的直观性,并注重集合表示方法的转换与化简。简易逻辑考查有两种形式:一是在选择题和填空题中直接考查命题及其关系、逻辑联结词、“充要关系”、命题真伪的判断、全称命题和特称命题的否定等,二是在解答题中深层次考查常用逻辑用语表达数学解题过程和逻辑推理。考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考查函数的定义域与值域、函数的性质、函数与方程、基本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考查函数的性质。导数部分一方面考查导数的运算与导数的几何意义,另一方面考查导数的简单应用,如求函数的单调区间、极值与最值等,通常以客观题的形式出现,属于容易题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式出现,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。考点三:三角函数与平面向量一般是2道小题,1道综合解答题。小题一道考查平面向量有关概念及运算等,另一道对三角知识点的补充。大题中如果没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考查平面向量为主的试题,要注意数形结合思想在解题中的应用。向量重点考查平面向量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型.考点四:数列与不等式不等式主要考查一元二次不等式的解法、一元二次不等式组和