如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
会计学BP网络的初始化BP网络的学习规则BP网络的快速学习算法与选择BP网络的训练BP网络的设计(1)BP网络的设计(2)BP网络设计实例目标线例1:BP网络用于曲线拟合Step1:将要逼近的非线性函数设为正弦函数Step2:网络建立应用函数newff()建立BP网络结构,为二层BP网络。隐层神经元数目n可以改变,暂设为10,输出层有一个神经元。选择隐层和输出层神经元传递函数分别为tansig函数和purelin函数,网络训练算法采用trainlmn=10;net=newff(minmax(p),[n,1],{'tansig''purelin'},'trainlm');%对于该初始网络,可以应用sim()函数观察网络输出y1=sim(net,p);%同时绘制网络输出曲线,并与原函数相比较figure;plot(p,t,'-',p,y1,'--')title('未训练网络的输出结果');xlabel('时间');ylabel('仿真输出--原函数-');Step3:网络训练应用函数train()对网络进行训练之前,要先设置训练参数。将训练时间设置为50,精度设置为,其余用缺省值。训练后得到的误差变化过程如图:Stet4:网络测试对于训练好的网络进行仿真并绘制网络输出曲线,与原始非线性函数曲线以及未训练网络的输出结果曲线相比较讨论改变非线性函数的频率k值,和BP网络隐层神经元的数目,对于函数逼近的效果有一定的影响。网络非线性程度越高,对于BP网络的要求就越高,则相同的网络逼近效果要差一些;隐层神经元的数目对于网络逼近效果出有一定的影响,一般来说,隐层神经元数目越多,则BP网络逼近能力越强,而同时网络训练所用的时间相对来说也要长一些。思考题参考书