2422直线和圆的位置关系.doc
上传人:sy****28 上传时间:2024-09-15 格式:DOC 页数:3 大小:83KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

2422直线和圆的位置关系.doc

2422直线和圆的位置关系.doc

预览

在线预览结束,喜欢就下载吧,查找使用更方便

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

加强教学研究促进对话交流拓展专业视野《全校学习》让课堂教学焕发出生命的活力直线和圆的位置关系教学内容:直线和圆的位置关系教学目标:1、使学生掌握直线和圆的三种位置关系的定义及其判定方法和性质;2、通过直线和圆的位置关系的探究,向学生渗透类比、分类、数形结合的思想,培养学生观察、分析和发现问题的能力;3、使学生从运动的观点来观察直线和圆相交、相切、相离的关系、培养学生的辩证唯物主义观点.教学重点:直线与圆的三种位置关系教学难点:直线和圆的三种位置关系的性质和判定的正确运用教学过程:一、类比联想,提出问题1.前面已经研究了点和圆的位置关系,请学生回忆,点和圆有几种位置关系?它们的数量特征分别是什么?2.如果把点换成一条直线,直线和圆又有哪几种位置关系呢?(板书课题)二、根据图形运动变化,发现规律、传授新知1.尝试活动让学生在纸上画一个圆,把直尺边缘看成一条直线,任意移动直尺,观察有几种位置关系.2.电脑演示在学生尝试活动的基础上,教师演示图:一个已知圆O与一条直线l发生相对运动的情况.将圆向上逐步运动,让学生观察,把观察到的情况说出来.(1)相交;直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.给出以上定义后,教师强调:(1)直线与圆有唯一公共点的含义是“有且仅有”,这与直线与圆有一个公共点的含义不同.(2)直线和圆除了上述三种位置关系外,有第四种关系吗?即一条直线和圆的公共点能否多于两个?为什么?学生回答后,教师总结并板书:如果⊙O的半径为r,圆心O到直线l的距离为d,那么这三个命题从左边到右边反映了直线与圆的位置关系所具有的性质;从右边到左边则是直线与圆的位置关系的判定.以上三个命题的正确性是通过观察得到的,可鼓励程度好的学生课后对它们加以证明.三、例题分析,课堂练习例在Rt△ABC中,∠C=90°,AC=3厘米,BC=4厘米,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2厘米;(2)r=2.4厘米;(3)r=3厘米.让学生自己作出回答,教师板书解题过程,并画出相应的图形.练习1填空在Rt△ABC中,∠C=90°,AC=3,AB=5,若以C为圆心,r为半径作圆,那么:(1)当直线AB与⊙C相离时,r的取值范围是______;(2)当直线AB与⊙C相切时,r的取值范围是______;(3)当直线AB与⊙C相交时,r的取值范围是______.练习2如图7-101,已知∠AOB=30°,M为OB上一点,且OM=5厘米,以M为圆心、以r为半径的圆与直线OA有怎样的位置关系?为什么?(1)r=2厘米;(2)r=4厘米;(3)r=2.51厘米.四、课堂小结问:这节课学习了哪些具体内容?用到了哪些数学思想方法?应注意什么问题?在学生回答的基础上教师归纳:1.出示直线与圆的位置关系表.2.本节课类比点和圆的位置关系,从运动变化的观点来研究直线和圆的位置关系;利用了分类的思想把直线和圆的位置关系分为三类来讨论;用了数形结合的思想,通过d和r这两个数量之间的关系来研究直线和圆的位置关系.3.学习时应注意弄清直线与圆的位置关系的性质与判定使用的区别与联系.五、作业:课本106页“练习”中的2和110页中的2