基于WiFi指纹的室内定位系统中采样和匹配算法研究--毕业论文.docx
上传人:天马****23 上传时间:2024-09-12 格式:DOCX 页数:76 大小:3.1MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

基于WiFi指纹的室内定位系统中采样和匹配算法研究--毕业论文.docx

基于WiFi指纹的室内定位系统中采样和匹配算法研究--毕业论文.docx

预览

免费试读已结束,剩余 66 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

摘要随着信息技术的快速发展,基于终端的室内定位技术能为用户提供信息检索服务、室内导航服务、社区交友服务等,因此已经成为当前的热点研究领域。已有的室内定位算法包括:三角测量法、临近法、WiFi指纹定位法以及行人航位推算法,其中WiFi指纹法定位范围广、成本低、使用灵活、无需额外硬件支持,因此本文研究基于WiFi指纹的室内定位。然而传统的WiFi指纹定位法尚存在如下问题:第一,在采样阶段,每个采样点上需要采集信号并预处理,已有的单方向采集和均值滤波的处理方式尚不够理想;第二,在定位阶段,已有一些匹配算法如KNN,但匹配精度尚待提高。本文在WiFi指纹法的采样阶段,针对信号采集环节,分析了已有的单方向采集法,指出其没有考虑在手机指向不同方向时信号强度的差异性,故提出了不同方向采集法;针对信号预处理环节,分析了均值滤波法,指出其把一些与均值偏差较大的信号也算入总和求平均的缺点,引入了高斯滤波来滤除这些信号。最后,将不同方向采集和高斯滤波融合,提出了改进的采样法——FODG(FusionofDifferentdirectioncollectionandGaussFilter)。在WiFi指纹法的定位阶段,从欧氏距离计算和坐标匹配两方面对主流的匹配法KNN改进。在欧式距离计算环节,分析了KNN法赋予每个AP相同权重的弊端,提出赋不同权值给各个拥有不同信号强度的AP;在坐标匹配环节,指出了KNN法赋予K个近邻采样点相同权值的缺点,提出了距离加权的KNN法(WKNN),最后将AP加权欧式距离法和WKNN法融合,提出了改进的匹配法——AWKNN(APweightedanddistancedweightedKNN)。最后本文实现了WiFi指纹定位系统,包括采样阶段和定位阶段各模块的设计与实现,并在实现的定位系统基础上对相关参数(采集的AP数量、WiFi信号采集数量、近邻数K值)进行了最优化取值。接着对采样阶段算法FODG和定位阶段算法AWKNN进行性能分析,最后从定位精度、定位稳定性、定位速度三个方面,分析整个改进的定位系统(FODG采样+AWKNN匹配)的性能,结果表明:改进后的系统定位精度和定位稳定性相比传统法均有一定程度的提高,而定位速度只有小幅度的减慢。关键词:室内定位,WiFi指纹,高斯滤波,欧氏距离,KNNAbstractWiththerapiddevelopmentofinformationtechnology,terminal-basedindoorpositioningtechnologyhasenabledvariousservices,includinginformationretrieval,indoornavigation,communitydatingetc.Existingindoorpositioningmethodologiescanbecategarizedas:triangulationmethod,proximitymethod,WiFifingerprintbasedpositioningmethodandpedestriandeadreckoning.AsWiFifingerprintbasedpositioningmethodhasadvantagesofwidepositioningrange,lowcost,flexibleusageandnorequirementofadditionalhardware,thisthesismainlydealswiththekeyissuesinthismethod.Basically,therestillexistsseveralproblemsintraditionalWiFifingerprintbasedpositioningmethod.Firstly,insamplingphase,weshouldcollectandpreprocesssignalsateachsamplingpoint,existingunidirectionalcollectingandmeanfilteringmethodisstillnotideal.Secondly,inpositioningphase,thematchingaccuracyofsometypicalexistingalgorithmssuchasKNNstillneedtobeincreased.InsamplingphaseofWiFifingerprintingmethod,forthefunctionalityofsignalcoll