浙江省2016届高三数学考前模拟试卷(文科)(5月份) WORD版含解析.doc
上传人:雨巷****怡轩 上传时间:2024-09-12 格式:DOC 页数:19 大小:1.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

浙江省2016届高三数学考前模拟试卷(文科)(5月份) WORD版含解析.doc

浙江省2016届高三数学考前模拟试卷(文科)(5月份)WORD版含解析.doc

预览

免费试读已结束,剩余 9 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2016年浙江省高考数学考前模拟试卷(文科)(5月份)一、选择题(共8小题,每小题5分,满分40分)1.已知全集U=R,集合P={x|x2﹣2x≤0},Q={y|y=x2﹣2x},则P∩Q为()A.[﹣1,2]B.[0,2]C.[0,+∞)D.[﹣1,+∞)2.设x>0,则“a=1”是“x+≥2恒成立”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.为了得到函数的图象y=sin(3x+1),只需把函数y=sin3x的图象上所有的点()A.向左平移1个单位长度B.向右平移1个单位长度C.向左平移个单位长度D.向右平移个单位长度4.设a、b是两条不同的直线,α、β是两个不同的平面,则下面四个命题中错误的是()A.若a⊥b,a⊥α,b⊄α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥βC.若a⊥β,α⊥β,则a∥α或a⊊αD.若a∥α,α⊥β,则a⊥β5.设{an}是等比数列,下列结论中正确的是()A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则2a2<a1+a3D.若a1<0,则(a2﹣a1)(a2﹣a3)>06.如图,正方体ABCD﹣A′B′C′D′中,M为BC边的中点,点P在底面A′B′C′D′和侧面CDD′C′上运动并且使∠MAC′=∠PAC′,那么点P的轨迹是()A.两段圆弧B.两段椭圆弧C.两段双曲线弧D.两段抛物线弧7.如图,焦点在x轴上的椭圆+=1(a>0)的左、右焦点分别为F1、F2,P是椭圆上位于第一象限内的一点,且直线F2P与y轴的正半轴交于A点,△APF1的内切圆在边PF1上的切点为Q,若|F1Q|=4,则该椭圆的离心率为()A.B.C.D.8.设函数f(x)与g(x)的定义域为R,且f(x)单调递增,F(x)=f(x)+g(x),G(x)=f(x)﹣g(x).若对任意x1,x2∈R(x1≠x2),不等式[f(x1)﹣f(x2)]2>[g(x1)﹣g(x2)]2恒成立.则()A.F(x),G(x)都是增函数B.F(x),G(x)都是减函数C.F(x)是增函数,G(x)是减函数D.F(x)是减函数,G(x)是增函数二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.函数f(x)=sin2x﹣cos(2x+)的值域为,最小正周期为,单调递减区间是.10.双曲线9x2﹣16y2=﹣144的实轴长等于,其渐近线与圆x2+y2﹣2x+m=0相切,则m=.11.已知某几何体的三视图如图所示(单位:cm),则此几何体的体积为,表面积为.12.已知函数f(x)=,若f(log2)+f[f(9)]=;若f(f(a))≤1,则实数a的取值范围是.13.已知实数x,y满足x2+y2≤1,则|x+2y﹣2|+|6﹣2x﹣3y|的最大值是.14.在△ABC中,CA=2,CB=6,∠ACB=60°.若点O在∠ACB的角平分线上,满足=m+n,m,n∈R,且﹣≤n≤﹣,则||的取值范围是.15.已知实数a,b满足:a≥,b∈R,且a+|b|≤1,则+b的取值范围是.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,内角A,B,C所对的边长分别为a,b,c,tan.(Ⅰ)求角C的大小;(Ⅱ)已知△ABC不是钝角三角形,且c=2,sinC+sin(B﹣A)=2sin2A,求△ABC的面积.17.如图所示,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是梯形,AD∥BC,侧面ABB1A1为菱形,∠DAB=∠DAA1.(Ⅰ)求证:A1B⊥AD;(Ⅱ)若AD=AB=2BC,∠A1AB=60°,点D在平面ABB1A1上的射影恰为线段A1B的中点,求平面DCC1D1与平面ABB1A1所成锐二面角的余弦值.18.对于任意的n∈N*,数列{an}满足++…+=n+1(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列{an}的前n项和为Sn,求Sn;(Ⅲ)求证:对于n≥2,++…+<1﹣.19.已知O是坐标系的原点,F是抛物线C:x2=4y的焦点,过点F的直线交抛物线于A,B两点,弦AB的中点为M,△OAB的重心为G.(Ⅰ)求动点G的轨迹方程;(Ⅱ)设(Ⅰ)中的轨迹与y轴的交点为D,当直线AB与x轴相交时,令交点为E,求四边形DEMG的面积最小时直线AB的方程.20.已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b的定义域为[0,1](Ⅰ)当a=1时,函数f(x)在定义域内有两个不同的零点,求b的取值范围;(Ⅱ)记f(x)的最大值为M,证明:f(x)+M>0.2016年浙江省高考
立即下载