2010届高三一轮复习数学精品资料第七章 直线与圆的方程(47页) ttmbworddoc--高中.doc
上传人:13****88 上传时间:2024-09-15 格式:DOC 页数:47 大小:4.6MB 金币:6 举报 版权申诉
预览加载中,请您耐心等待几秒...

2010届高三一轮复习数学精品资料第七章 直线与圆的方程(47页) ttmbworddoc--高中.doc

2010届高三一轮复习数学精品资料第七章直线与圆的方程(47页).docttmbworddoc--高中数学.doc

预览

免费试读已结束,剩余 37 页请下载文档后查看

6 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

http://cooco.net.cn永久免费组卷搜题网http://cooco.net.cn永久免费组卷搜题网第七章直线与圆的方程§7.1直线的方程基础自测1.设直线l与x轴的交点是P,且倾斜角为,若将此直线绕点P按逆时针方向旋转45°,得到直线的倾斜角为+45°,则()A.0°≤<180°B.0°≤<135°C.0°<≤135°D.0°<<135°答案D2.(2008·全国Ⅰ文)曲线y=x3-2x+4在点(1,3)处的切线的倾斜角为()A.30°B.45°C.60°D.120°答案B3.过点M(-2,m),N(m,4)的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或4答案A4.过点P(-1,2)且方向向量为a=(-1,2)的直线方程为()A.2x+y=0B.x-2y+5=0C.x-2y=0D.x+2y-5=0答案A5.(2009·株州模拟)一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为.答案x+2y-2=0或2x+y+2=0例1已知三点A(1,-1),B(3,3),C(4,5).求证:A、B、C三点在同一条直线上.证明方法一∵A(1,-1),B(3,3),C(4,5),∴kAB==2,kBC==2,∴kAB=kBC,∴A、B、C三点共线.方法二∵A(1,-1),B(3,3),C(4,5),∴|AB|=2,|BC|=,|AC|=3,∴|AB|+|BC|=|AC|,即A、B、C三点共线.方法三∵A(1,-1),B(3,3),C(4,5),∴=(2,4),=(1,2),∴=2.又∵与有公共点B,∴A、B、C三点共线.例2已知实数x,y满足y=x2-2x+2(-1≤x≤1).试求:的最大值与最小值.解由的几何意义可知,它表示经过定点P(-2,-3)与曲线段AB上任一点(x,y)的直线的斜率k,如图可知:kPA≤k≤kPB,由已知可得:A(1,1),B(-1,5),∴≤k≤8,故的最大值为8,最小值为.例3求适合下列条件的直线方程:(1)经过点P(3,2),且在两坐标轴上的截距相等;(2)经过点A(-1,-3),倾斜角等于直线y=3x的倾斜角的2倍.解(1)方法一设直线l在x,y轴上的截距均为a,若a=0,即l过点(0,0)和(3,2),∴l的方程为y=x,即2x-3y=0.若a≠0,则设l的方程为,∵l过点(3,2),∴,∴a=5,∴l的方程为x+y-5=0,综上可知,直线l的方程为2x-3y=0或x+y-5=0.方法二由题意知,所求直线的斜率k存在且k≠0,设直线方程为y-2=k(x-3),令y=0,得x=3-,令x=0,得y=2-3k,由已知3-=2-3k,解得k=-1或k=,∴直线l的方程为:y-2=-(x-3)或y-2=(x-3),即x+y-5=0或2x-3y=0.(2)由已知:设直线y=3x的倾斜角为,则所求直线的倾斜角为2.∵tan=3,∴tan2==-.又直线经过点A(-1,-3),因而所求直线方程为y+3=-(x+1),即3x+4y+15=0.例4(12分)过点P(2,1)的直线l交x轴、y轴正半轴于A、B两点,求使:(1)△AOB面积最小时l的方程;(2)|PA|·|PB|最小时l的方程.解方法一设直线的方程为(a>2,b>1),由已知可得.2分(1)∵2≤=1,∴ab≥8.∴S△AOB=ab≥4.4分当且仅当==,即a=4,b=2时,S△AOB取最小值4,此时直线l的方程为=1,即x+2y-4=0.6分(2)由+=1,得ab-a-2b=0,变形得(a-2)(b-1)=2,|PA|·|PB|=·=≥.10分当且仅当a-2=1,b-1=2,即a=3,b=3时,|PA|·|PB|取最小值4.此时直线l的方程为x+y-3=0.12分方法二设直线l的方程为y-1=k(x-2)(k<0),则l与x轴、y轴正半轴分别交于A、B(0,1-2k).(1)S△AOB=(1-2k)=×≥(4+4)=4.当且仅当-4k=-,即k=-时取最小值,此时直线l的方程为y-1=-(x-2),即x+2y-4=0.6分·(2)|PA|·|PB|==≥4