第四讲淀积工艺(半导体制造技术).ppt
上传人:小代****回来 上传时间:2024-09-10 格式:PPT 页数:67 大小:3.8MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

第四讲淀积工艺(半导体制造技术).ppt

第四讲淀积工艺(半导体制造技术).ppt

预览

免费试读已结束,剩余 57 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

淀积概述目标MSI时代nMOS晶体管的各层膜引言ULSI硅片上的多层金属化芯片中的金属层薄膜淀积半导体器件工艺中的“薄膜”是一种固态薄膜,薄膜的种类和制备方法在第四章中已作过简单介绍。薄膜淀积是指任何在硅片衬底上物理淀积一层膜的工艺,属于薄膜制造的一种工艺,所淀积的薄膜可以是导体、绝缘材料或者半导体材料。比如二氧化硅(SiO2)、氮化硅(Si3N4)、多晶硅以及金属(Cu、W).固态薄膜薄膜特性膜对台阶的覆盖高的深宽比间隙可以用深宽比来描述一个小间隙(如槽或孔),深宽比定义为间隙的深度和宽度的比值(见下图)高的深宽比间隙薄膜生长的步骤膜淀积技术化学气相淀积化学气相淀积的设备CVD化学过程以上5中基本反应中,有一些特定的化学气相淀积反应用来在硅片衬底上淀积膜。对于某种特定反应的选择通常要考虑淀积温度、膜的特性以及加工中的问题等因素。例如,用硅烷和氧气通过氧化反应淀积SiO2膜。反应生成物SiO2淀积在硅片表面,副产物事是氢。SiH4+O2SiO2+2H2CVD反应CVD传输和反应步骤图在化学气相淀积中,气体先驱物传输到硅片表面进行吸附作用和反应。列入,下面的三个反应。反应1)显示硅烷首先分解成SiH2先驱物。SiH2先驱物再和硅烷反应形成Si2H6。在中间CVD反应中,SiH2随着Si2H6被吸附在硅片表面。然后Si2H6分解形成最终需要的固态硅膜。SiH4(气态)SiH2(气态)+H2(气态)(高温分解)SiH4(气态)+SiH2(气态)Si2H6(气态)(反应半成品形成)Si2H6(气态)2Si(固态)+3H2(气态)(最终产品形成)以上实例是硅气相外延的一个反应过程速度限制阶段在实际大批量生产中,CVD反应的时间长短很重要。温度升高会促使表面反应速度增加。基于CVD反应的有序性,最慢的反应阶段会成为整个工艺的瓶颈。换言之,反应速度最慢的阶段将决定整个淀积过程的速度。CVD的反应速度取决于质量传输和表面反应两个因素。在质量传输阶段淀积工艺对温度不敏感,这意味着无论温度如何,传输到硅片表面加速反应的反应气体的量都不足。在此情况下,CVD工艺通常是受质量传输所限制的。在更低的反应温度和压力下,由于只有更少的能量来驱动表面反应,表面反应速度会降低。最终反应物达到硅片表面的速度将超过表面化学反应的速度。在这种情况下。淀积速度是受化学反应速度限制的,此时称表面反应控制限制。CVD气流动力学CVD气流动力学对淀积出均匀的膜很重要。所谓气体流动,指的是反应气体输送到硅片表面的反应区域(见下图)。CVD气体流动的主要因素包括,反应气体从主气流中到硅片表面的输送以及在表面的化学反应速度。CVD中的气流硅片表面的气流CVD反应中的压力如果CVD发生在低压下,反应气体通过边界层达到表面的扩散作用会显著增加。这会增加反应物到衬底的输运。在CVD反应中低压的作用就是使反应物更快地到达衬底表面。在这种情况下,速度限制将受约于表面反应,即在较低压下CVD工艺是反应速度限制的。CVD过程中的掺杂CVD淀积过程中,在SiO2中掺入杂质对硅片加工来说也是很重要。例如,在淀积SiO2的过程中,反应气体中加入PH3后,会形成磷硅玻璃。化学反应方程如下:SiH4(气)+2PH3(气)+O2(气)SiO2(固)+2P(固)+5H2(气)在磷硅玻璃中,磷以P2O5的形式存在,磷硅玻璃由P2O5和SiO2的混合物共同组成;对于要永久黏附在硅片表面的磷硅玻璃来说,P2O5含量(重量比)不超过4%,这是因为磷硅玻璃(PSG)有吸潮作用。应用高密度等离子体CVD可以在600~650℃的温度下淀积PSG,由于它的淀积温度、相对平坦的表面、好的间隙填充能力,近来也常采用PSG作为第一层层间介质(ILD-1)。在SiO2中引入P2O5可以减小膜应力,进而改进膜的完整性。掺杂会增加玻璃的抗吸水性。PSG层还可以有效地固定离子杂质。离子会吸附到磷原子上,因而不能通过PSG层扩散达到硅片表面。CVD淀积系统CVD反应器类型各种类型CVD反应器及其主要特点连续加工的APCVD反应炉APCVDTEOS-O3改善后的台阶覆盖用TEOS-O3淀积SiO2TEOS是正硅酸乙脂。分子式为Si(C2H5O4),是一种液体。臭氧(O3)包含三个氧原子,比氧气有更强的反应活性,因此,这步工艺可以不用等离子体,在低温下(如400℃)进行,因为不需要等离子体,O3就能是TEOS分解,因此反应可以在常压(APCVD,760托)或者亚常压(SACVD,600托)下。淀积的二氧化硅薄膜改善了台阶覆盖轮廓,均匀性好,具有作为绝缘介质优异的电学特性。优点:对于高的深宽比槽有良好的覆盖填充能力。缺点:SiO2膜多孔,因而通常需要回流来去掉潮气并增加膜密度。PSG回流后平坦化的表面LP