如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第四章核磁共振波谱法(NuclearMagneticResonanceSpectroscopy,NMR)§4.1简介§4.2NMR的基本原理§4.3化学位移§4.4自旋耦合与自旋裂分§4.5图谱解析§4.1简介核磁共振波谱(NuclearMagneticResonancespectroscopy,NMR)类似于红外或紫外吸收光谱,是吸收光谱的另一种形式。核磁共振波谱是测量原子核对射频辐射(4~600MHz)的吸收,这种吸收只有在高磁场中才能产生。核磁共振是近几十年发展起来的新技术,它与元素分析、紫外光谱、红外光谱、质谱等方法配合,已成为化合物结构测定的有力工具。目前核磁共振波谱的应用已经渗透到化学学科的各个领域,广泛应用于有机化学、药物化学、生物化学、环境化学等与化学相关的各个学科。1924年,泡利(Pauli)预见原子核具有自旋和核磁矩;1946年,斯坦福大学布洛赫(Bloch)和哈佛大学珀塞尔(Purcell)分别同时独立地观察到核磁共振现象;1952年,分享1952年诺贝尔物理奖;1953年,第一台商品化核磁共振波谱仪问世;1965年,恩斯特(Ernst)发展出傅里叶变换核磁共振和二维核磁共振;1991年,被授予诺贝尔化学奖;2002年,NMR领域再一次获诺贝尔化学奖;2003年,英国科学家彼得·曼斯菲尔德和美国科学家保罗·劳特布尔因在核磁共振成像技术领域的突破性成就而一同分享2003年诺贝尔生理学或医学奖。英国科学家彼得·曼斯菲尔德和美国科学家保罗·劳特布尔因在核磁共振成像技术领域的突破性成就而一同分享2003年诺贝尔生理学或医学奖。迄今,已经有六位科学家因在核磁共振研究领域的突出贡献而分别获得诺贝尔物理学、化学、生理学或医学奖。英国科学家彼得·曼斯菲尔德核磁共振成像技术(NuclearMagneticResonanceImaging,简称NMRI),是获取样品平面(断面)上的分布信息,称作核磁共振计算机断层成象,也就是切片扫描方式。核磁共振手段可测定生物组织中含水量分布的图像,这实际上就是质子密度分布的图像。现已对生物组织的病变和其含水量分布的关系作过广泛的研究。病变会使组织中的含水量发生变化,所以,通过水含量分布的情况就可以把病变部位找出来。在化学领域中的应用1结构的测定和确证,有时还可以测定构象和构型;2化合物的纯度的检查,它的灵敏度很高,能够检测出用层析和纸层析检查不出来的杂质;3混合物的分析,如果主要信号不重叠,不需要分离就能测定出混合物的比率;4质子交换,单键的旋转和环的转化等。§4.2核磁共振基本原理一、原子核的自旋若原子核存在自旋,产生核磁矩:自旋角动量:hρ=II(+1)2π核磁矩:μ=γρI:自旋量子数;h:普朗克常数;γ:磁旋比,(magnetogyricratio),rad·T−1·s−1,即核磁矩与核的自旋角动量的比值,不同的核具有不同旋磁比,它是磁核的一个特征值;μ为磁矩,用核磁子表示,1核磁子单位等于5.05×10−27J·T−1;自旋量子数(I)不为零的核都具有磁矩,原子的自旋情况可以用(I)表征:质量数原子序数自旋量子数I偶数偶数0偶数奇数1,2,3….奇数奇数或偶数1/2;3/2;5/2….161232讨论:1)I=0的原子核O8;C6;S16等,无自旋,没有磁矩,不产生共振吸收。2142)I=1,2,3…….的原子核:H1,N7等1733I=3/2,5/2……的原子核:O8,S16等这类原子核的核电荷分布可看作一个椭圆体,电荷分布不均匀,共振吸收复杂,研究应用较少;3)I=1/2的原子核:1H,13C,19F,31P等原子核的电荷均匀分布,并象陀螺一样自旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有机化合物的主要组成元素。1H,13C的I=1/2,是核磁共振波谱研究的主要对象。二、核磁共振现象自旋量子数I=1/2的原子核(氢核),可当作电荷均匀分布的球体,绕自旋轴转动时,产生磁场,类似一个小磁铁。按照量子力学理论,自旋核在外加磁场中的自旋取向数不是任意的,当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向。如:氢核(I=1/2),两种取向(两个能级):(1)与外磁场平行,能量低,磁量子数m=+1/2;(2)与外磁场相反,能量高,磁量子数m=-1/2;两种取向不完全与外磁场平行,θ=54°24’和125°36’每个自旋取向分别代表原子核的某个特定的能量状态,并可用磁量子数(m)来表示,它是不连续的量子