2022年湖北省武汉新洲区五校联考数学九上期末质量跟踪监视试题含解析.doc
上传人:天马****23 上传时间:2024-09-15 格式:DOC 页数:23 大小:2.3MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2022年湖北省武汉新洲区五校联考数学九上期末质量跟踪监视试题含解析.doc

2022年湖北省武汉新洲区五校联考数学九上期末质量跟踪监视试题含解析.doc

预览

免费试读已结束,剩余 13 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,和都是等腰直角三角形,,,的顶点在的斜边上,、交于,若,,则的长为()A.B.C.D.2.如图,是的直径,点在上,,则的度数为()A.B.C.D.3.抛物线y=(x+2)2﹣2的顶点坐标是()A.(2,﹣2)B.(2,2)C.(﹣2,2)D.(﹣2,﹣2)4.下列事件中,必然事件是()A.一定是正数B.八边形的外角和等于C.明天是晴天D.中秋节晚上能看到月亮5.如图,若一次函数的图象经过二、三、四象限,则二次函数的图象可能是A.B.C.D.6.二次函数y=ax1+bx+c(a≠0)的部分图象如图所示,图象过点(-4,0),对称轴为直线x=-1,下列结论:①abc>0;②1a-b=0;③一元二次方程ax1+bx+c=0的解是x1=-4,x1=1;④当y>0时,-4<x<1.其中正确的结论有()A.4个B.3个C.1个D.1个7.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,则∠C的度数是()A.45°B.75°C.105°D.120°8.已知关于x的方程x2﹣x+m=0的一个根是3,则另一个根是()A.﹣6B.6C.﹣2D.29.已知某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣(t﹣4)2+1.若此礼炮在升空到最高处时引爆,则引爆需要的时间为()A.3sB.4sC.5sD.6s10.计算的结果是()A.B.C.D.9二、填空题(每小题3分,共24分)11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是______________.12.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.13.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.14.反比例函数的图象在第____________象限.15.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=1.如果点M是OP的中点,则DM的长是_____.16.如图,边长为4的正六边形内接于,则的内接正三角形的边长为______________.17.从1,2,﹣3三个数中,随机抽取两个数相乘,积是偶数的概率是_____.18.铅球行进高度y(m)与水平距离x(m)之间的关系为y=﹣x2+x+,铅球推出后最大高度是_____m,铅球落地时的水平距离是______m.三、解答题(共66分)19.(10分)甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)20.(6分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.21.(6分)某水果商场经销一种高档水果,原价每千克25元,连续两次涨价后每千克水果现在的价格为36元.(1)若每次涨价的百分率相同.求每次涨价的百分率;(2)若进价不变,按现价售出,每千克可获利15元,但该水果出现滞销,商场决定降价m元出售,同时把降价的幅度m控制在的范围,经市场调查发现,每天销售量(千克)与降价的幅度m(元)成正比例,且当时,.求与m的函数解析式;(3)在(
立即下载