如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第页记忆数学公式的有效方法记忆数学公式的有效方法1.用言语描述公式比如我们前面描述向量的数量积公式“横坐标之积与纵坐标之积的和”,再比如同底数幂相乘的公式,可直接描述为“底数不变,指数相加”,幂的乘方公式,可直接描述为“底数不变,指数相乘”。可能这些还不足以简洁奇异,那么“奇变偶不变,符号看象限”,这聊聊十字,就概括了六组几十个勾引公式,简直是高中数学中的“神诀”,朗朗上口,轻松记忆,很多高中生毕业后,可能数学知识忘了,但这句口诀,毕生难忘。2.捉住公式特点比如两角和的余弦公式公式特点相当明显,即两个余弦乘积减去两个正弦乘积,用谐音“科科减赛赛”或者“哭哭减笑笑”就很好记再比如,一个不常用但一旦用了就很方便的公式公式特点是“sin上面1-cos,或者sin下方1+cos”,根据这个特点,可谐音记作“山上一剑客,山下一侠客”,生动好记,还有些趣味。当然这些,都需求我们本人去揣摩这些公式的特点3.运用类比和比较记忆比如上面两角和的余弦公式记住了,那么两角差的余弦公式可以类比记忆,“哭哭加笑笑”,同时还可类比记忆两角和与差的正弦公式、正切公式,诸如此类再比如,学过等差数列后,你熟习了等差数列的性质,可以根据等比数列的定义,去理解记忆等比数列的性质,例如,等差数列的下标和如果一样,那么它们的和相等,到了等比数列这,就是它们的积相等了;再如,等差数列前n项和有一个公式是n乘以两头项,那么类比到等比数列,可得类似结论:等比数列前n项积,等于两头项的n次方。诸如此类,类比在数列的学习中,是一种特别重要的思想常用勾引公式记忆口诀对于π/2*k±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。公式右侧的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆程度勾引名不变;符号看象限。各种三角函数在四个象限的符号如何判断,也能够记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只需正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只需余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦...........+............+............—............—........余弦...........+............—............—............+........正切...........+............—............+............—........余切...........+............—............+............—........同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=11+tan^2(&a