湖南省长郡中学高中数学3.3.7函数的导数的应用课件新人教A版选修1_1-经典通用宝藏文档.ppt
上传人:13****88 上传时间:2024-09-13 格式:PPT 页数:11 大小:78KB 金币:6 举报 版权申诉
预览加载中,请您耐心等待几秒...

湖南省长郡中学高中数学3.3.7函数的导数的应用课件新人教A版选修1_1-经典通用宝藏文档.ppt

湖南省长郡中学高中数学3.3.7函数的导数的应用课件新人教A版选修1_1-经典通用宝藏文档.ppt

预览

免费试读已结束,剩余 1 页请下载文档后查看

6 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题。通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具。本节我们运用导数,解决一些生活中的优化问题。解决优化问题的基本思路是:【例2】在甲、乙两个工厂,甲厂位于一直线河岸的岸边A处,乙厂与甲厂在河的同侧,乙厂位于离河岸40km的B处,乙厂到河岸的垂足D与A相距50km,两厂要在此岸边合建一个供水站C,从供水站到甲厂和乙厂的水管费用分别为每千米3a元和5a元,问供水站C建在岸边何处才能使水管费用最省?【例3】如图,有一块半椭圆形钢板,其半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底AB是半椭圆的短轴,上底CD的端点在椭圆上,记,梯形面积为S。(I)求面积S以为自变量的函数式,并写出其定义域;(II)求面积S的最大值。【例4】某地有三家工厂,分别位于矩形ABCD的顶点A,B及CD的中点P处,已知AB=20km,CB=10km,为了处理三家工厂的污水,现要在矩形ABCD的区域上(含边界),且A,B与等距离的一点O处建造一个污水处理厂,并铺设排污管道AO,BO,OP,设排污管道的总长为ykm。(I)按下列要求写出函数关系式:①设(rad),将表示成的函数关系式;②设(km),将表示成的函数关系式。(II)请你选用(I)中的一个函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短。【例5】两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧AB上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为xkm,建在C处的垃圾处理厂对城A和城B的总影响度为y,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在AB的中点时,对城A和城B的总影响度为0.065。(1)将y表示成x的函数;(II)讨论(1)中函数的单调性,并判断弧AB上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。【例6】某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克。(Ⅰ)求a的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大。【例7】某地建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元。(Ⅰ)试写出y关于x的函数关系式;(Ⅱ)当m=640米时,需新建多少个桥墩才能使y最小?
立即下载