如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
课题1分子和原子学习目标:1.认识物质是由分子、原子等微小粒子构成的。2.认识分子是保持物质化学性质的最小粒子;原子是化学变化中的最小粒子。3.培养抽象思维能力、想象能力以及分析、推理的能力。重点:1.物理变化、化学变化的主要区别。2.分子、原子的概念及主要区别。3.用分子、原子观点解释日常生活中某些物质的变化。难点:分子和原子的区别和联系教学过程:教师演示:品红扩散,组织学生讨论。为什么水会逐渐减少?为什么温度升高,水会减少得快(温度升高,分子能量增大,运动速度加快)?品红为什么能扩散?联系实际再举例说明分子不断运动且温度升高,分子运动加快的事实。分子性质1、分子质量和体积非常小分子虽然看不见也摸不着,但可以用扫描隧道显微镜拍摄出某些分子的照片,证明它真实存在着,同时,大量的生活事实,如我们能闻到花的香味,湿衣服会晾干,糖放入水中会溶解等,所有这些事实,都会使我们感受到分子的存在和不停的运动,分子与分子之间不是紧密相连而是有空隙的。硫在氧气中燃烧生成有刺激性气味的气体,而铁在氧气中燃烧生成黑色固体,这说明同种分子性质相同,不同种分子性质不同。【扫描隧道显微镜】扫描隧道显微镜是80年代初期发展起来的新型显微仪器,能达到原子级的超高分辨率。扫描隧道显微镜不仅作为观察物质表面结构的重要手段,而且可以作为在极其细微的尺度--即纳米尺度(1nm=10-9m)上实现对物质表面精细加工的新奇工具。目前科学家已经可以随心所欲地操纵某些原子。一门新兴的学科--纳米科学技术已经应运而生。中国科学院化学研究所隧道显徽学研究室的科学家正奋力投入纳米科学技术的研究,运用扫描隧道显微学方法,已于1992年成功地在石墨表面刻写出纳米级的汉字和图案。用扫描隧道显微镜在高定向裂解石墨表面上刻写的汉?“中国”,其中笔画的线条宽度为10nm。如果用这样大小的汉字来书写《红楼梦》,只需大头针针头那样小的面积,就可写进全书的内容。用扫描隧道显微镜画出来的中国地图其比例尺为l∶1013。这是目前世界上最小的中国地图。2、分子是不断运动的:实验:在40ml的蒸馏水中滴入几滴酚酞,取少量置于试管中,滴入浓氨水,观察到溶液变成红色。讨论:在物理变化和化学变化过程中,分子发生了怎样的变化?物理变化时,分子不变,只是分子间的间隔发生了变化,而在化学变化中分子发生了变化,变成更小的粒子烧杯A烧杯B现象溶液慢慢变红无现象原因氨水分子不断运动,扩散。使酚酞变红3、分子之间有间隔物质呈三态变化的原因:分子之间的间隔大小发生变化的缘故。由分子构成的物质发生化学变化时,分子发生变化,生成别的物质的分子。水受热变成水蒸气,硫在氧气中燃烧生成二氧化硫的微观过程。【讨论】:这两个变化中,物质的分子有没有变化;如何从分子角度理解物理变化和化学变化?在生活中常遇到这些现象a:路过酒厂门口,并未喝酒,却能闻到酒的香味;b:在烟厂工作,虽不会吸烟,身上却有一身烟味;c:衣服洗过以后,经过晾晒,湿衣变干。那么,水那里去了?d:糖放在水中,渐渐消失,但水却有了甜味。e:半杯酒精倒入半杯水中,却不满一杯。怎么回事?【评价】:教师对学生的发言进行评价并提出问题:物质发生物理变化时分子本身没有变化,而发生化学变化时分子本身发生了变化,如:硫分子,氧分子在点燃条件下变成了二氧化硫分子,那么由二氧化硫分子构成的二氧化硫气体,是否具有硫和氧气的化学性质呢?(如:是否助燃)为什么?【思考、回答】:因硫的化学性质由硫分子保持,氧气的化学性质由氧分子保持,而二氧化硫分子只能保持二氧化硫的化学性质。物质在发生物理变化时:变化的只是分子间的距离和排列方式,而分子本身并没有改变。(如:三态循环)物质在发生化学变化时::旧的物质的分子被破坏,新的物质的分子生成。构成新的物质。如:硫在氧气中燃烧,生成二氧化硫。硫的分子和氧气的分子被破坏,生成了二氧化硫的分子,无数多个二氧化硫的分子,就构成了二氧化硫。,硫的分子和氧气的分子被破坏了,没有了,当然不能再保持硫和氧气的化学性质了。分子:保持物质化学性质的最小粒子。同种物质的分子性质相同;不同种物质的分子性质不同;【分子间存在吸引力】打开一瓶酒精和一瓶水的瓶塞,酒精挥发比水快;熔化蜡烛比熔化蔗糖容易。这是由于它们分子间的引力大小不同所致。当酒精和水的分子要从其表面“逃走”时,其余的酒精和水的分子就“拉住”它,不让它走,这就是分子间的引力。只是外界提供的热量克服了分子间的引力让它“逃走”罢了。这是荷兰物理学家范德华在1873年提出来的,他并且在计算气体体积受压强和温度影响的变化中加上气体分子间引力的影响,受到科学家们的赞赏,获得1910年诺贝尔物理奖。由此,分子间引力又称范德华力,或简称分子间力。分子间的分子间力比原子间的键