如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
第四章相似图形第4节相似多边形主备高鸿禧审核蔡建敏一:学习目标:1.总结相似多边形的定义以及相似比。2.根据定义判断两个多边形是否是相似多边形二:学习重难点:1、相似多边形的定义以及相似比2、判断两个多边形是否是相似多边形三:学习过程和学习策略:(一).提出疑问,创设问题情景,引入新课到目前为止,我们已接触过很多图形,有规则的,也有不规则的;有形状相同的,也有形状不相同的,本节课我们就来研究形状相同的图形.(二)、自主学习:目标:总结相似多边形的定义,用定义去判断两个多边形是否相似内容:课本到122页方法:1:独立完成120页的引例,并学习例1从中找出相似多边形的定义和相似比的定义。2:同桌相互交流完成122页想一想,议一议。3:发言组长把本组内没能解决的问题记下来,待集体探讨解决。时间;10分钟检测题:请你填一填(1)以下五个命题:①所有的正方形都相似②所有的矩形都相似③所有的三角形都相似④所有的等腰直角三角形都相似⑤所有的正五边形都相似.其中正确的命题有_______.(2)已知三个数1,2,,请你再写一个数,使这四个数能成比例,那么这个数是________(填写一个即可).(3)相同时刻的物高与影长成比例,如果有一根电线杆在地面上的影长是50米,同时高为1.5米的标竿的影长为2.5米,那么这根电线杆的高为________米.(4)在一张比例尺为1∶50000的地图上,量得A、B两地的图上距离为2.5厘米,那么A、B两地的实际距离是________米.(三)练习反馈:如图,图(1)是一个正六边形ABCDEF,使线段BC、FE的长增加相等的数,得图(2),将图(1)中的点A、D分别向两边拉长相等的量,得图(3).那么图(1)与图(2)相似吗?图(1)与图(3)相似吗?图(2)与图(3)呢?为什么?(1)如图4—4—1与2—4—2,等腰梯形ABCD与等腰梯形A′B′C′D′相似,∠A′=65°,A′B′=6cm,AB=8cm,AD=5cm,试求梯形ABCD的各角的度数与A′D′、B′C′的长.图4—4—1图4—4—2(2)如图4—4—3,有一个半径为50米的圆形草坪,现在沿草坪的四周开辟了宽10米的环形跑道,那么:①草坪的外边缘与环形跑道的外边缘所成的两个圆相似吗?②这两个圆的半径之比和周长之比分别是多少?它们有什么关系吗?(四).归纳总结:通过今天的学习,你有何收获?你还有哪些疑惑?(五)作业布置:1、基础练习1.两个多边形相似的条件是()A.对应角相等B.对应边相等C.对应角相等,对应边相等D.对应角相等,对应边成比例2.下列图形是相似多边形的是()A.所有的平行四边形;B.所有的矩形C.所有的菱形;D.所有的正方形3.找出两类永远相似的图形_________、_________.4.在四边形ABCD与四边形A′B′C′D′中,∠A=∠A′,∠B=∠B′,∠C=∠C′,∠D=∠D′,且,则四边形________∽四边形________,且它们的相似比是________.5.有一个角为120°的菱形与有一个角为________的菱形相似.6.把一个矩形剪去一个正方形,若剩余的矩形和原矩形相似,求原矩形的长与宽的比.2、提高训练(第1~3小题各6分,第4小题10分,共28分)1.下列命题正确的是()A.有一个角对应相等的平行四边形相似B.对应边成比例的两个平行四边形相似C.有一个角对应相等的两个等腰梯形相似;D.有一个角对应相等的两个菱形相似2.下列说法中正确的是()A.相似形一定是全等形B.不全等的图形不是相似形C.全等形一定是相似形D.不相似的图形可能是全等形[来源:学科网]3.如图所示,有三个矩形,其中是相似形的是()A.甲和乙B.甲和丙C.乙和丙D.甲、乙和丙4.已知如图所示的两个梯形相似,求出未知的x,y,z的长和∠α,∠β的度数.[来源:学科网ZXXK]3、探索发现(每小题12分,共24分)1.相片框(如图所示)中,内外两个矩形是否相似?2.暑假时,康子帮母亲到鱼店去买鱼,鱼店里有一种“竹笑鱼”,个个都长得非常相似,现在根据大小有两种不同的价格,如图所示,鱼长10cm的每条100日元,鱼长18cm的每条150日元,康子不知道买哪条更好些,你看怎么办?