证明勒让德-张猜想和吉尔布雷斯猜想的原文(英文)并附译.pdf
上传人:qw****27 上传时间:2024-09-11 格式:PDF 页数:30 大小:405KB 金币:15 举报 版权申诉
预览加载中,请您耐心等待几秒...

证明勒让德-张猜想和吉尔布雷斯猜想的原文(英文)并附译.pdf

证明勒让德-张猜想和吉尔布雷斯猜想的原文(英文)并附译.pdf

预览

免费试读已结束,剩余 20 页请下载文档后查看

15 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

此文发表在:GeneralMathematics,ISSN12215023,Vol.20,Issue23,2012,pp.86100Legendre-Zhang’sConjecture&Gilbreath’sConjectureandProofsThereofZhangTianshuNanhaiwestoilcorporation,ChinaoffshorePetroleum,Zhanjiangcity,Guangdongprovince,P.R.ChinaEmail:tianshu_zhang507@aliyun.com;AbstractIfreducelimitswhichcontainoddprimesbyahalfforLegendre’sconjecture,thenthereisatleastanoddprimewithintheeitherhalflikewise,thisisexactlytheLegendreZhang’sconjecture.WeshallfirstprovetheLegendreZhang’sconjecturebymathematicalinductionwiththeaidoftwonumberaxes’positivehalflineswhosedirectionsreversefromeachother.Successively,provetheGilbreath’sconjecturebymathematicalinductionwiththeaidofthegotresult.KeywordsLegendreZhang’sconjecture,Mathematicalinduction,Numberaxis’spositivehalfline,Oddprimepoints,PLS,RPLSP,SCRPAB,Gilbreath’sconjecture.BasicConceptsTheGilbreath’sconjecturewasfirstsuggestedin1958bytheAmericanmathematicianandamateurmagicianNormanL.Gilbreathfollowingsomedoodlingonanapkin.Hestartedbywritingdownthefirstfewprimes.2,3,5,7,11,13,17,19,23,29,31,…1Undertheseheputtheirdifferences:1,2,2,4,2,4,2,4,6,2,…Undertheseheputtheunsigneddifferenceofthedifferences.1,0,2,2,2,2,2,2,4,…Andhecontinuedthisprocessoffindingiterateddifferences:2,3,5,7,11,13,17,19,23,29,31,…1,2,2,4,2,4,2,4,6,2,…1,0,2,2,2,2,2,2,4,…1,2,0,0,0,0,0,2,…1,2,0,0,0,0,2,…1,2,0,0,0,2,…1,2,0,0,2,…1,2,0,2,…1,2,2,…1,0,…1,…TheGilbreath’sConjectureisthatthenumbersinthefirstcolumnexceptforfirstnumberoffirstrankareallone.TheLegendre’sconjectureisknownasanageoldproblem.Istherealwaysaprimebetweenn2and(n+1)2foreverypositiveintegern?Ifoddnumbersbetweenn2and(n+1)2aredividedintotwopartsbyn(n+1)exceptforn=1,thenLegendreZhang’sconjectureassertsthatthereisalwaysanoddprimeineithersuchpart.ManifestlytheLegendreZhang’sconjectureisbetterthantheLegendre’sconjecture.2Please,seethesequenceofintegersinrelationtotheLegendreZhang’sconjectureaslistedbelow.1(