2023高中数学知识点总结归纳.pdf
上传人:文库****品店 上传时间:2024-09-11 格式:PDF 页数:8 大小:297KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

2023高中数学知识点总结归纳.pdf

2023高中数学知识点总结归纳.pdf

预览

在线预览结束,喜欢就下载吧,查找使用更方便

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

2023高中数学知识点总结归纳高中数学学问点总结归纳一、导数的应用1、用导数讨论函数的最值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,讨论在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边削减,右边增加,则该零点处函数取微小值。学习了如何用导数讨论函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。2、生活中常见的函数优化问题1)费用、成本最省问题2)利润、收益最大问题3)面积、体积最(大)问题二、推理与证明1、归纳推理:归纳推理是(高二数学)的一个重点内容,其难点就是有部分结论得到一般结论,的(方法)是充分考虑部分结论供应的信息,从中发觉一般规律;类比推理的难点是发觉两类对象的相像特征,由其中一类对象的特征得出另一类对象的特征,的方法是利用已经把握的数学学问,分析两类对象之间的关系,通过两类对象已知的相像特征得出所需要的相像特征。12、类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特别到特别的推理。三、不等式对于含有参数的一元二次不等式解的争论1)二次项系数:假如二次项系数含有字母,要分二次项系数是正数、零和负数三种状况进行争论。2)不等式对应方程的根:假如一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则依据这两个根的大小进行分类争论,这时,两个根的大小关系就是分类标准,假如一元二次不等式对应的方程根不能通过因式分解的方法求出来,则依据方程的判别式进行分类争论。通过不等式练习题能够关心你更加娴熟的运用不等式的学问点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。四、坐标平面上的直线1、内容要目:直线的点方向式方程、直线的点法向式方程、点斜式方程、直线方程的一般式、直线的倾斜角和斜率等。点到直线的距离,两直线的夹角以及两平行线之间的距离。2、基本要求:把握求直线的方法,娴熟转化确定直线方向的不同条件(例如:直线方向向量、法向量、斜率、倾斜角等)。娴熟推断点与直线、直线与直线的不同位置,能正确求点到直线的距离、两直2线的交点坐标及两直线的夹角大小。3、重难点:初步建立代数方法解决几何问题的观念,正确将几何条件与代数表示进行转化,定量地讨论点与直线、直线与直线的位置关系。依据两个独立条件求出直线方程。娴熟运用待定系数法。五、圆锥曲线1、内容要目:直角坐标系中,曲线C是方程F(x,y)=0的曲线及方程F(x,y)=0是曲线C的方程,圆的标准方程及圆的一般方程。椭圆、双曲线、抛物线的标准方程及它们的性质。2、基本要求:理解曲线的方程与方程的曲线的意义,利用代数方法推断定点是否在曲线上及求曲线的交点。把握圆、椭圆、双曲线、抛物线的定义和求这些曲线方程的基本方法。求曲线的交点之间的距离及交点的中点坐标。利用直线和圆、圆和圆的位置关系的几何判定,确定它们的位置关系并利用解析法解决相应的几何问题。3、重难点:建立数形结合的概念,理解曲线与方程的对应关系,把握代数讨论几何的方法,把握把已知条件转化为等价的代数表示,通过代数方法解决几何问题。(高一数学)上学期学问点复习1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);3(3)推断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为简单,应先化简,再推断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在