吉林省松原市扶余县第一中学2014年高考数学真题集锦素材:专题八立体几何.doc
上传人:佳宁****么啦 上传时间:2024-09-12 格式:DOC 页数:38 大小:3.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

吉林省松原市扶余县第一中学2014年高考数学真题集锦素材:专题八立体几何.doc

吉林省松原市扶余县第一中学2014年高考数学真题集锦素材:专题八立体几何.DOC

预览

免费试读已结束,剩余 28 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

1.(2013·高考新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π解析:选A.原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V=4×2×2+eq\f(1,2)π×22×4=16+8π.2.(2013·高考新课标全国卷Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器厚度,则球的体积为()A.eq\f(500π,3)cm3B.eq\f(866π,3)cm3C.eq\f(1372π,3)cm3D.eq\f(2048π,3)cm3解析:选A.如图,作出球的一个截面,则MC=8-6=2(cm),BM=eq\f(1,2)AB=eq\f(1,2)×8=4(cm).设球的半径为Rcm,则R2=OM2+MB2=(R-2)2+42,∴R=5,∴V球=eq\f(4,3)π×53=eq\f(500π,3)(cm3).3.(2013·高考新课标全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析:选D.根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,故选D.4.(2013·高考大纲全国卷)已知正四棱柱ABCD­A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.eq\f(2,3)B.eq\f(\r(3),3)C.eq\f(\r(2),3)D.eq\f(1,3)解析:选A.法一:如图,连接AC,交BD于点O,由正四棱柱的性质,有AC⊥BD.因为CC1⊥平面ABCD,所以CC1⊥BD.又CC1∩AC=C,所以BD⊥平面CC1O.在平面CC1O内作CH⊥C1O,垂足为H,则BD⊥CH.又BD∩C1O=O,所以CH⊥平面BDC1,连接DH,则DH为CD在平面BDC1上的射影,所以∠CDH为CD与平面BDC1所成的角.设AA1=2AB=2.在Rt△COC1中,由等面积变换易求得CH=eq\f(2,3).在Rt△CDH中,sin∠CDH=eq\f(CH,CD)=eq\f(2,3).法二:以D为坐标原点,建立空间直角坐标系,如图,设AA1=2AB=2,则D(0,0,0),C(0,1,0),B(1,1,0),C1(0,1,2),则eq\o(DC,\s\up6(→))=(0,1,0),eq\o(DB,\s\up6(→))=(1,1,0),eq\o(DC1,\s\up6(→))=(0,1,2).设平面BDC1的法向量为n=(x,y,z),则n⊥eq\o(DB,\s\up6(→)),n⊥eq\o(DC1,\s\up6(→)),所以有eq\b\lc\{\rc\(\a\vs4\al\co1(x+y=0,,y+2z=0,))令y=-2,得平面BDC1的一个法向量为n=(2,-2,1).设CD与平面BDC1所成的角为θ,则sinθ=|cosn,eq\o(DC,\s\up6(→))|=eq\b\lc\|\rc\|(\a\vs4\al\co1(\f(n·\o(DC,\s\up6(→)),|n||\o(DC,\s\up6(→))|)))=eq\f(2,3).5.(2013·高考大纲全国卷)已知正四棱柱ABCD­A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.eq\f(2,3)B.eq\f(\r(3),3)C.eq\f(\r(2),3)D.eq\f(1,3)解析:选A.法一:如图,连接AC,交BD于点O,由正四棱柱的性质,有AC⊥BD.因为CC1⊥平面ABCD,所以CC1⊥BD.又CC1∩AC=C,所以BD⊥平面CC1O.在平面CC1O内作CH⊥C1O,垂足为H,则BD⊥CH.又BD∩C1O=O,所以CH⊥平面BDC1,连接DH,则DH为CD在平面BDC1上的射影,所以∠CDH为CD与平面BDC1所成的角.设AA1=2AB=2.在Rt△COC1中,由等面积变换易求得CH=eq\f(2,3).在Rt△CDH中,sin∠CDH=eq\f(CH,CD)=eq\f(2,3).法二:以D为坐标原点,建立空间直角坐标系,如图,设AA1=2AB=2,则D(0,0,0),C(0