平面向量数量积的物理背景及其含义26373学习教案.pptx
上传人:王子****青蛙 上传时间:2024-09-13 格式:PPTX 页数:43 大小:10.2MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

平面向量数量积的物理背景及其含义26373学习教案.pptx

平面向量数量积的物理背景及其含义26373学习教案.pptx

预览

免费试读已结束,剩余 33 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

会计学当θ=0º时,与同向;了解(liǎojiě)平面向量数量积的物理背景,理解数量积的含义及其物理意义;过程(guòchéng)与方法情感(qínggǎn)态度与价值观教学(jiāoxué)重点:问题(1)功的数学本质(běnzhì)是什么?④、沿倾角为30°的斜面(xiémiàn)向上运动10米.向量的数量(shùliàng)积概念:向量的数量积是一个数量,那么它什么(shénme)时候为正,什么(shénme)时候为负?其中θ是与的夹角,叫做向量在方向上(在方向上)的投影.并且规定,零向量与任一向量的数量积为零,即。投影也是一个数量(shùliàng),不是向量;由向量数量积的定义(dìngyì),试完成下面问题:例1:已知,的夹角θ=120º,求。数量积等于的长度与在的方向上的投影的乘积。数量(shùliàng)积的运算规律:数量积的运算(yùnsuàn)规律:探究:两个向量的数量(shùliàng)积与数的乘法有很大区别(3)在实数中,若a0,且ab=0,则b=0;在数量积中,若,且,不能推出.因为任一与的非零向量都有(5)在实数中,有,但是对于向量来说显然,这是因为左端是与共线的向量,而右端是与共线的向量,而一般与不共线.例2:我们知道,对任意,恒有/例3:已知,的夹角60º,求。(2)例4:已知,且与不共线,k为何值时,向量与互相垂直.∴2、数量(shùliàng)积几何意义3、重要(zhòngyào)性质4、运算(yùnsuàn)律1、判断下列(xiàliè)各题正确与否:(1)若,则对任一向量,有()(2)若,则对任一非零向量,有()(3)若,,则.()(4)若,则至少有一个为零.()(5)若,,则.()(6)若,则当且仅当时成立.()(7)对任意向量,有.()(8)对任意向量,有.()2、已知4、下面给出的关系式中正确的个数是()5、若向量(xiàngliàng)与的夹角为60°,则向量(xiàngliàng)的模()6、已知1、/