如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
会计学在实际问题研究中,多变量问题是经常会遇到的。变量太多,无疑会增加分析问题的难度与复杂性,而且在许多实际问题中,多个变量之间是具有一定的相关关系的。因此,人们会很自然地想到,能否在相关分析的基础上,用较少的新变量代替原来较多的旧变量,而且使这些较少的新变量尽可能多地保留原来变量所反映的信息?事实上,这种想法是可以实现的,主成分分析方法就是综合处理这种问题的一种强有力的工具。主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。一、主成分分析的基本原理当p较大时,在p维空间中考察问题比较麻烦。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多变量指标所反映的信息,同时它们之间又是彼此独立的。定义:记x1,x2,…,xP为原变量指标,z1,z2,…,zm(m≤p)为新变量指标②z1是x1,x2,…,xP的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…,xP的所有线性组合中方差最大者;…;zm是与z1,z2,……,zm-1都不相关的x1,x2,…xP,的所有线性组合中方差最大者。则新变量指标z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第1,第2,…,第m主成分。从以上的分析可以看出,主成分分析的实质就是确定原来变量xj(j=1,2,…,p)在诸主成分zi(i=1,2,…,m)上的荷载lij(i=1,2,…,m;j=1,2,…,p)。从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。二、主成分分析的计算步骤3.求R的特征根计算主成分贡献率及累计贡献率贡献率三、实例演示///第一步将原始数据标准化。第三步求R的特征值和特征向量。从上表看,前3个特征值累计贡献率已达89.564%,说明前3个主成分基本包含了全部指标具有的信息,我们取前3个特征值,并计算出相应的特征向量:因而前三个主成分为:第三主成分:四.主成分分析的应用例1.城市环境生态化是城市发展的必然趁势,表现为社会、经济、环境与生态全方位的现代化水平,一个符合生态规律的生态城市应该是结构合理、功能高效和关系协调的城市生态系统。所谓结构合理是指适度的人口密度,合理的土地利用,良好的环境质量,充足的绿地系统,完善的基础设施,有效的自然保护;功能高效是指资源的优化配置、物力的经济投入、人力的充分发挥、物流的畅通有序、信息流的快捷;关系协调是指人和自然协调、社会关系协调、城乡协调、资源利用和更新协调。一个城市要实现生态城市的发展目标,关键是在市场经济的体制下逐步改善城市的生态环境质量,防止生态环境质量恶化,因此,对城市的生态环境水平调查评价很有必要。我们对江苏省十个城市的生态环境状况进行了调查,得到生态环境指标的指数值,见表1。现对生态环境水平分析和评价。/利用Matlab中的princomp命令实现。具体程序如下0.89280.78310.56080.84190.84640.76160.82340.63840.96040.8514];/这样,前三个主成分为第一主成分贡献率为%,第二主成分贡献率为%,第三主成分贡献率为%,前三个主成分累计贡献率达%。如果按80%以上的信息量选取新因子,则可以选取前三个新因子。第一新因子z1包含的信息量最大为%,它的主要代表变量为X8(城市文明)、X7(生产效率)、X4(城市绿化),其权重系数分别为、、,反映了这三个变量与生态环境水平密切相关,第二新因子Z2包含的信息量次之为%,它的主要代表变量为X3(地理结构)、X6(资源配置)、X9(可持续性),其权重系数分别为、、,第三新因子Z3包含的信息量为%,代表总量为X9(可持续性)、X5(物质还原),权重系数分别为、。这些代表变量反映了各自对该新因子作用的大小,它们是生态环境系统中最重要的影响因素。根据前三个主成分得分,用其贡献率加权,即得十个城市各自的总得分根据总得分排序,结果见表1。