如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
导数【考点透视】1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念.2.熟记基本导数公式;掌握两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数.3.理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值.【例题解析】考点1导数的概念对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例1.是的导函数,则的值是.[解答过程]例2.设函数,集合M=,P=,若MP,则实数a的取值范围是()A.(-∞,1)B.(0,1)C.(1,+∞)D.[1,+∞)[解答过程]由综上可得MP时,例3.若曲线的一条切线与直线垂直,则的方程为()A.B.C.D.[解答过程]与直线垂直的直线为,即在某一点的导数为4,而,所以在(1,1)处导数为4,此点的切线为.故选A.例4.已知两抛物线,取何值时,有且只有一条公切线,求出此时公切线的方程.解答过程:函数的导数为,曲线在点P()处的切线方程为,即①曲线在点Q的切线方程是即②若直线是过点P点和Q点的公切线,则①式和②式都是的方程,故得,消去得方程,若△=,即时,解得,此时点P、Q重合.∴当时,和有且只有一条公切线,由①式得公切线方程为.考点3导数的应用1..求函数的解析式;2.求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式.典型例题例5.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.1个B.2个C.3个D.4个[解答过程]由图象可见,在区间(a,b)内的图象上有2个极小值点.故选B.例6.设函数在及时取得极值.(Ⅰ)求a、b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围.思路启迪:利用函数在及时取得极值构造方程组求a、b的值.解答过程:(Ⅰ),因为函数在及取得极值,则有,.即解得,.(Ⅱ)由(Ⅰ)可知,,.当时,;当时,;当时,.所以,当时,取得极大值,又,.则当时,的最大值为.因为对于任意的,有恒成立,所以,解得或,因此的取值范围为.例7.设函数f(x)=ax-(a+1)ln(x+1),其中a-1,求f(x)的单调区间.[考查目的]本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力[解答过程]由已知得函数的定义域为,且(1)当时,函数在上单调递减,(2)当时,由解得、随的变化情况如下表—0+极小值从上表可知当时,函数在上单调递减.当时,函数在上单调递增.综上所述:当时,函数在上单调递减.当时,函数在上单调递减,函数在上单调递增.典型例题例8.用长为18cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?[考查目的]本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.[解答过程]设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V′(x)=0,解得x=0(舍去)或x=1,因此x=1.当0<x<1时,V′(x)>0;当1<x<时,V′(x)<0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2m,高为1.5m.答:当长方体的长为2m时,宽为1m,高为1.5m时,体积最大,最大体积为3m3。一、选择题1.y=esinxcos(sinx),则y′(0)等于()A.0B.1C.-1D.22.经过原点且与曲线y=相切的方程是()A.x+y=0或+y=0B.x-y=0或+y=0C.x+y=0或-y=0D.x-y=0或-y=03.设f(x)可导,且f′(0)=0,又=-1,则f(0)()A.可能不是f(x)的极值B.一定是f(x)的极值C.一定是f(x)的极小值D.等于04.设函数fn(x)=n2x2(1-x)n(n为正整数),则fn(x)在[0,1]上的最大值为()A.0B.1C.D.5、函数y=(x2-1)3+1在x=-1处()有极大值B、无极值C、有极小值D、无法确定极值情况6.f(x)=ax3+3x2+2,f’(-1)=4,