(word完整版)高中数学导数及其应用.doc
上传人:念珊****写意 上传时间:2024-09-11 格式:DOC 页数:39 大小:3.8MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

(word完整版)高中数学导数及其应用.doc

(word完整版)高中数学导数及其应用.doc

预览

免费试读已结束,剩余 29 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

高中数学导数及其应用一、知识网络二、高考考点1、导数定义的认知与应用;2、求导公式与运算法则的运用;3、导数的几何意义;4、导数在研究函数单调性上的应用;5、导数在寻求函数的极值或最值的应用;6、导数在解决实际问题中的应用。三、知识要点(一)导数1、导数的概念(1)导数的定义(Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比,叫做函数在点到这间的平均变化率。如果时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作,即。(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即。认知:(Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。(Ⅱ)求函数在点处的导数的三部曲:①求函数的增量;②求平均变化率;③求极限上述三部曲可简记为一差、二比、三极限。(2)导数的几何意义:函数在点处的导数,是曲线在点处的切线的斜率。(3)函数的可导与连续的关系函数的可导与连续既有联系又有区别:(Ⅰ)若函数在点处可导,则在点处连续;若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。事实上,若函数在点处可导,则有此时,记,则有即在点处连续。(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。反例:在点处连续,但在点处无导数。事实上,在点处的增量当时,,;当时,,由此可知,不存在,故在点处不可导。2、求导公式与求导运算法则(1)基本函数的导数(求导公式)公式1常数的导数:(c为常数),即常数的导数等于0。公式2幂函数的导数:。公式3正弦函数的导数:。公式4余弦函数的导数:公式5对数函数的导数:(Ⅰ);(Ⅱ)公式6指数函数的导数:(Ⅰ);(Ⅱ)。(2)可导函数四则运算的求导法则设为可导函数,则有法则1;法则2;法则3。3、复合函数的导数(1)复合函数的求导法则设,复合成以x为自变量的函数,则复合函数对自变量x的导数,等于已知函数对中间变量的导数,乘以中间变量u对自变量x的导数,即。引申:设,复合成函数,则有(2)认知(Ⅰ)认知复合函数的复合关系循着“由表及里”的顺序,即从外向内分析:首先由最外层的主体函数结构设出,由第一层中间变量的函数结构设出,由第二层中间变量的函数结构设出,由此一层一层分析,一直到最里层的中间变量为自变量x的简单函数为止。于是所给函数便“分解”为若干相互联系的简单函数的链条:;(Ⅱ)运用上述法则求复合函数导数的解题思路①分解:分析所给函数的复合关系,适当选定中间变量,将所给函数“分解”为相互联系的若干简单函数;②求导:明确每一步是哪一变量对哪一变量求导之后,运用上述求导法则和基本公式求;③还原:将上述求导后所得结果中的中间变量还原为自变量的函数,并作以适当化简或整理。二、导数的应用1、函数的单调性(1)导数的符号与函数的单调性:一般地,设函数在某个区间内可导,则若为增函数;若为减函数;若在某个区间内恒有,则在这一区间上为常函数。(2)利用导数求函数单调性的步骤(Ⅰ)确定函数的定义域;(Ⅱ)求导数;(Ⅲ)令,解出相应的x的范围当时,在相应区间上为增函数;当时在相应区间上为减函数。(3)强调与认知(Ⅰ)利用导数讨论函数的单调区间,首先要确定函数的定义域D,并且解决问题的过程中始终立足于定义域D。若由不等式确定的x的取值集合为A,由确定的x的取值范围为B,则应用;(Ⅱ)在某一区间内(或)是函数在这一区间上为增(或减)函数的充分(不必要)条件。因此方程的根不一定是增、减区间的分界点,并且在对函数划分单调区间时,除去确定的根之外,还要注意在定义域内的不连续点和不可导点,它们也可能是增、减区间的分界点。举例:(1)是R上的可导函数,也是R上的单调函数,但是当x=0时,。(2)在点x=0处连续,点x=0处不可导,但在(-∞,0)内递减,在(0,+∞)内递增。2、函数的极值(1)函数的极值的定义设函数在点附近有定义,如果对附近的所有点,都有,则说是函数的一个极大值,记作;如果对附近的所有点,都有,则说是函数的一个极小值,记作。极大值与极小值统称极值认知:由函数的极值定义可知:(Ⅰ)函数的极值点是区间内部的点,并且函数的极值只有在区间内的连续点处取得;(Ⅱ)极值是一个局部性概念;一个函数在其定义域内可以有多个极大值和极小值,并且在某一点的极小值有可能大于另一点处的极大值;(Ⅲ)当函数在区间上连续且有有限个极值点时,函数在内的极大值点,极小值点交替出现。(2)函数的极值的判定设函数可导,且在点处连续,判定是极大(小)值的方法