第六章植被遥感ppt课件.ppt
上传人:天马****23 上传时间:2024-09-14 格式:PPT 页数:69 大小:4.9MB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

第六章植被遥感ppt课件.ppt

第六章植被遥感ppt课件.ppt

预览

免费试读已结束,剩余 59 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

地理信息系统课程第6章植被遥感本章内容􀂄5.1植被的光谱特征􀂄5.2植被遥感判读5.3植物生长状况的解译􀂄5.4植被指数􀂄5.5植被指数与地表参数的关系􀂄5.6植被遥感应用植被遥感研究的主要内容:(1)通过遥感影像从土壤背景中区分出植被覆盖区域,并对植被类型进行划分,区分是森林还是草场或者农田,并区分森林、草场、农作物的类型等。(2)能否从遥感数据中反演出植被的各种重要参数,例如叶面积指数(LAI)、叶子宽度、平均叶倾角、植被层平均高度、树冠形状等等,这一类问题属于更深层次的遥感数据定量分析方法与反演技术。(3)能否准确的估算出与植被光合作用有关的若干物理量,例如植被表面水分蒸腾量、光合作用强度(干物资生产率)、叶表面温度等。5.1植物的光谱特征5.1.1健康植物的反射光谱特征健康植物的波谱曲线有明显的特点(图7.1),在可见光的0.55µm附近有一个反射率为10%~20%的小反射峰。在0.45µm和0.65µm附近有两个明显的吸收谷。在0.7~0.8µm是一个陡坡,反射率急剧增高。在近红外波段0.8~1.3µm之间形成一个高的,反射率可达40%或更大的反射峰。在1.45µm,1.95µm和2.6~2.7µm处有三个吸收谷。两个反射峰、五个吸收谷在地表景物中,通常只有植物在近红外波段有很高的反射率,所以在彩色红外航空像片或包含近红外波段的假彩色合成遥感图像上可以很容易区分植被和其他景物。5.1.2影响植物光谱的因素叶子的颜色叶子的组织结构叶子的含水量植物的覆盖度叶子的颜色叶子的组织结构叶子的组织结构及光谱特征叶子的含水量植物的覆盖度“红移”与“蓝移”“红边”定义为反射光谱的一阶微分最大值所对应的光谱位置,通常位于0.68~0.75µm之间。当绿色植物叶绿素含量高,生长旺盛时,“红边”会向波长增加的方向偏移,称“红移”。当植物由于受金属元素“毒害”、感染病虫害、污染受害或者缺水缺肥等原因而“失绿”时,则“红边”会向波长短的方向移动,称“蓝移”。因此,根据“红边”位移量可以精确地估计叶绿素含量或探测叶片的生化组分。图7.4矿区红杉林反射曲线的蓝移现象5.2不同植物类型的区分5.3植物生长状况的解译5.4植被指数5.4.1植被指数(VegetationIndex,VI)选用多个特征波段的遥感数据,经加、减、乘、除等线性或非线性组合运算,产生某些对植被长势、生物量等有一定指示意义的专题数值,称为植被指数。植被指数计算在植被指数的计算中,通常选用R波段和NIR波段。建立植被指数的关键增强植被信息的同时,使非植被信息最小化。由于植被光谱受到植被本身、土壤背景、环境条件、大气状况、仪器定标等内外因素的影响,因此植被指数往往具有明显的地域性和时效性。主要植被指数5.4.2植被指数的种类比值植被指数可提供植被反射的重要信息,是植被长势、丰度的度量方法之一。同理,可见光绿波段(叶绿素引起的反射)与红波段之比G/R,也是有效的。比值植被指数可从多种遥感系统中得到。但主要用于Landsat的MSS、TM和气象卫星的AVHRR。RVI是绿色植物的一个灵敏的指示参数。研究表明,它与叶面积指数(LAI)、叶干生物量(DM)、叶绿素含量相关性高,被广泛用于估算和监测绿色植物生物量。在植被高密度覆盖情况下,它对植被十分敏感,与生物量的相关性最好。但当植被覆盖度小于50%时,它的分辨能力显著下降。此外,RVI对大气状况很敏感,大气效应大大地降低了它对植被检测的灵敏度,尤其是当RVI值高时。因此,最好运用经大气纠正的数据,或将两波段的灰度值(DN)转换成反射率(ρ)后再计算RVI,以消除大气对两波段不同非线性衰减的影响。2)归一化植被指数(NDVI):归一化指数(NDVI)被定义为近红外波段与可见光红波段数值之差和这两个波段数值之和的比值。即:或NDVI是简单比值RVI经非线性的归一化处理所得。在植被遥感中,NDVI的应用最为广泛,是植被生长状态及植被覆盖度的最佳指示因子,与植被分布密度呈线性相关。因此又被认为是反映生物量和植被监测的指标。典型的地面覆盖类型的NDVI值域:􀂉云、水、雪R>NIR,则NDVI<0􀂉岩石、裸土R≌NIR,则NDVI≌0􀂉植被R<NIR,则NDVI>027NDVI的一个缺陷在于,对土壤背景的变化较为敏感。实验证明,当植被覆盖度小于15%时,植被的NDVI值高于裸土的NDVI值,植被可以被检测出来,但因植被覆盖度很低,如干旱、半干旱地区,其NDVI很难指示区域的植物生物量,而对观测与照明却反应敏感;当植被覆盖度由25~80%增加时,其NDVI值随植物量的增加呈线性迅速增加;当植被覆盖度大于80%时,其NDVI值增加延缓而呈现饱和状态,对植被检测灵敏度下降。差值植被