生物统计附实验设计的学习PPT教案.pptx
上传人:王子****青蛙 上传时间:2024-09-13 格式:PPTX 页数:27 大小:163KB 金币:10 举报 版权申诉
预览加载中,请您耐心等待几秒...

生物统计附实验设计的学习PPT教案.pptx

生物统计附实验设计的学习PPT教案.pptx

预览

免费试读已结束,剩余 17 页请下载文档后查看

10 金币

下载此文档

如果您无法下载资料,请参考说明:

1、部分资料下载需要金币,请确保您的账户上有足够的金币

2、已购买过的文档,再次下载不重复扣费

3、资料包下载后请先用软件解压,在使用对应软件打开

第一章绪论为了推动畜牧业、水产业的发展,常常要进行科学研究。进行科学研究离不开调查或试验。进行调查或试验必须解决二个问题:如何合理地进行调查或试验设计;如何科学地整理、分析所收集得来的具有变异的资料,揭示出隐藏在其内部的规律性。合理地进行调查或试验设计、科学地整理、分析所收集得来的资料是生物统计(Biometrics)的根本任务。生物统计是数理统计的原理和方法在生物科学研究中的应用,是一门应用数学。它在畜禽、水产科学研究中具有十分重要的作用。一、提供试验或调查设计的方法试验设计这一概念有广义与狭义之分:广义的试验设计是指试验研究课题设计,也就是指整个试验计划的拟定,包含课题名称、试验目的,研究依据、内容及预期达到的效果,试验方案,供试单位的选取、重复数的确定、试验单位的分组,试验的记录项目和要求,试验结果的分析方法,经济效益或社会效益的估计,已具备的条件,需要购置的仪器设备,参加研究人员的分工,试验时间、地点、进度安排和经费预算,成果鉴定,学术论文撰写等内容。狭义的试验设计主要是指试验单位(如动物试验的畜、禽)的选取、重复数目的确定及试验单位的分组。生物统计中的试验设计主要指狭义的试验设计。合理的试验设计能控制和降低试验误差,提高试验的精确性,为统计分析获得试验处理效应和试验误差的无偏估计提供必要的数据。调查设计这一概念也有广义与狭义之分:广义的调查设计是指整个调查计划的制定,包括调查研究的目的、对象与范围,调查项目及调查表,抽样方法的选取,抽样单位、抽样数量的确定,数据处理方法,调查组织工作,调查报告撰写与要求,经费预算等内容。狭义的调查设计主要包含抽样方法的选取,抽样单位、抽样数目的确定等内容。生物统计中的调查设计主要指狭义的调查设计。合理的调查设计能控制与降低抽样误差,提高调查的精确性,为获得总体参数的可靠估计提供必要的数据。试验或调查设计主要解决合理地收集必要而有代表性资料的问题。二、提供整理、分析资料的方法整理资料的基本方法是根据资料的特性将其整理成统计表、绘制成统计图。通过统计表、图可以大致看到所得资料集中、离散的情况。并利用所收集得来的数据计算出几个统计量,以表示该资料的数量特征、估计相应的总体参数。统计分析最重要的内容是差异显著性检验。通过抽样调查或控制试验,获得的是具有变异的资料。产生变异的原因是什么?是由于进行比较的处理间,例如不同品种、不同饲料配方间有实质性的差异或是由于无法控制的偶然因素所引起?显著性检验的目的就在于承认并尽量排除这些无法控制的偶然因素的干扰,将处理间是否存在本质差异揭示出来。显著性检验的方法很多,常用的有:t检验——主要用于检验两个处理平均数差异是否显著;方差分析——主要用于检验多个处理平均数间差异是否显著;检验——主要用于由质量性状得来的次数资料的显著性检验等。统计分析的另一个重要内容是对试验指标或畜禽性状间的关系进行研究,或者研究它们之间的联系性质和程度,或者寻求它们之间的联系形式,即进行相关分析与回归分析。通过对资料进行相关、回归分析,可以揭示出试验指标或性状间的内在联系,为畜禽、水产新品种选育等提供强有力的依据。还有一类统计分析方法不考虑资料的分布类型,也不事先对有关总体参数进行估算,这类统计分析方法叫非参数检验法。非参数检验法计算简便。当通常的检验方法对畜禽、水产科研中的某些资料无能为力时,非参数检验法则正好发挥作用。第二节生物统计的常用术语在实际研究中还有一类假想总体。例如进行几种饲料的饲养试验,实际上并不存在用这几种饲料进行饲养的总体,只是假设有这样的总体存在,把所进行的试验看成是假想总体的一个样本;样本中所包含的个体数目叫样本容量或大小(samplesize),样本容量常记为n。通常把n≤30的样本叫小样本,n>30的样本叫大样本。研究的目的是要了解总体,然而能观测到的却是样本,通过样本来推断总体是统计分析的基本特点。为了能可靠地从样本来推总体,要求样本具有一定的含量和代表性。只有从总体随机抽取的样本才具有代表性。所谓随机抽取(randomsampling)的样本是指总体中的每一个个体都有同等的机会被抽取组成样本。样本毕竟只是总体的一部分,尽管样本具有一定的含量也具有代表性,通过样本来推断总体也不可能是百分之百的正确。有很大的可靠性但有一定的错误率这是统计分析的又一特点。二、参数与统计量为了表示总体和样本的数量特征,需要计算出几个特征数。由总体计算的特征数叫参数(parameter);由样本计算的特征数叫统计量(staistic)。常用希腊字母表示参数,例如用μ表示总体平均数,用σ表示总体标准差;常用拉丁字母表示统计量,例如用表示样本平均数,用S表示样本标准差。总体参数由相应的统计量来估计,例如用估计μ,用S估计σ等。三、准确性