如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
【实验目的】【实验提要】1912年德拜提出“偶极矩”的概念来度量分子极性的大小,如图2-1所示,其定义是µ=q·d(2-1)式中,是正负电荷中心所带的电量;为正负电荷中心之间的距离;µ是一个向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m,电荷的数量级为10-20C,所以偶极矩的数量级是10-30C·m。通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,如图2-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P转向来衡量。P转向与永久偶极矩µ2的值成正比,与绝对温度T成反比。在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P诱导来衡量。显然P诱导可分为二项,即电子极化度P电子和原子极化度P原子,因此P诱导=P电子+P原子。P诱导与外电场强度成正比,与温度无关。如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010s-1的低频电场或静电场中,极性分子所产生的摩尔极化度P是转向极化、电子极化和原子极化的总和。当频率增加到1012~1014的中频(红外频率)时,电子的交变周期小于分子偶极矩的松弛时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场方向定向,故P转向=0,此时极性分子的摩尔极化度等于摩尔诱导极化度P诱导。当交变电场的频率进一步增加到>1015秒-1的高频(可见光和紫外频率)时,极向分子的转向运动和分子骨架变形都跟不上电场的变化此时极性分子的摩尔极化度P等于电子极化度P电子。因此,原则上只要在低频电场下测得极性分子的摩尔极化度P,在红外频率下测得极性分子的摩尔诱导极化度P诱导,两者相减得到极性分子摩尔转向极化度P转向,然后代入(2-2)式就可算出极性分子的永久偶极矩µ来。(2)极化度的测定:克劳修斯、莫索和德拜从电磁场理论得到了摩尔极化度与介电常数ε之间的关系式:海台斯纳特首先利用稀释溶液的近似公式。上面已经提到,在红外频率的电场下,可以测得极性分子摩尔诱导极化度P诱导=P电子+P原子。但是在实验上由于条件的限制,很难做到这一点。所以一般总是在高频电场下测定极性分子的电子极化度P电子。根据光的电磁理论,在同一频率的高频电场作用下,透明物质的介电常数与折光率的关系为:从(2-2)、(2-3)、(2-7)和(2-11)式可得:上述测求极性分子偶极矩的方法称为溶液法。溶液法测溶质偶极矩与气相测得的真实值间存在偏差。造成这种现象的原因是由于非极性溶剂与极性溶质分子相互间的作用—“溶剂化”作用。这种偏差现象称为溶剂法测量偶极矩的“溶剂效应”。罗斯和赛奇等人曾对溶剂效应开展了研究,并推导出校正公式。有兴趣的读者可阅读复旦大学等编《物理化学实验》下册参考资料[5]。此外测定偶极矩的方法还有多种,如温度法、分子束法、分子光谱法及利用微波谱的斯诺克法等。这里就不一一介绍了。电容池插在小电容测量仪的插孔上呈现的电容Cx可看作电容池两电极间的电容Cd和C0整个测试系统中的分布电容并联所构成,即Cx=C0+Cd,显然,C0值随介质而异,而Cd是一个恒定值。如果直接将Cx值当作C0值来计算,就会引进误差。因此,必须先求出Cd值(又称底值)并在以后的各次测量中给予扣除。测求Cd的方法如下:(2-18)【仪器与试剂】【实验内容与步骤】【数据处理】编号项目(2)四氯化碳及各溶液的折光率n:(3)计算、及各溶液的介电常数ε:==(4)作ε—X2图,由直线斜率求得α;作ρ—X2图,由直线斜率求得β;作n—X2图,由直线斜率求得γ。【思考题】参考文献