如果您无法下载资料,请参考说明:
1、部分资料下载需要金币,请确保您的账户上有足够的金币
2、已购买过的文档,再次下载不重复扣费
3、资料包下载后请先用软件解压,在使用对应软件打开
设a、b都表示数,规定a△b=3×a-2×b,①求3△2,2△3;②这个运算"△"有交换律吗?③求(17△6)△2,17△(6△2);④这个运算"△"有结合律吗?⑤如果已知4△b=2,求b.解:分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍.解:①3△2=3×3-2×2=9-4=52△3=3×2-2×3=6-6=0.②由①的例子可知"△"没有交换律.③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步39△2=3×39-2×2=113,所以(17△6)△2=113.对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次17△14=3×17-2×14=23,所以17△(6△2)=23.④由③的例子可知"△"也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5.+10赞十一、新定义的运算例134、12+4=1612-4=812×4=4812÷4=3A*B=A×B+23*4=3×4+2=14A○B=A×4-B×25○2=5×4-2×2=16A△B=A×7-B3△4=3×7-4=171已知a※b=(a+b)-(a-b),求9※2的值。分析与解:这是一道很简单的题,把a=9,b=2代入新运算式,即可算出结果。但是,根据四则运算的法则,我们可以先把新运算“※”化简,再求结果。a※b=(a+b)-(a-b)=a+b-a+b=2b。所以,9※2=2×2=4。由例1可知,如果定义的新运算是用四则混合运算表示,那么在符合四则混合运算的性质、法则的前提下,不妨先化简表示式。这样,可以既减少运算量,又提高运算的准确度。例2定义运算:a⊙b=3a+5ab+kb,其中a,b为任意两个数,k为常数。比如:2⊙7=3×2+5×2×7+7k。(1)已知5⊙2=73。问:8⊙5与5⊙8的值相等吗?(2)当k取什么值时,对于任何不同的数a,b,都有a⊙b=b⊙a,即新运算“⊙”符合交换律?分析与解:(1)首先应当确定新运算中的常数k。因为5⊙2=3×5+5×5×2+k×2=65+2k,所以由已知5⊙2=73,得65+2k=73,求得k=(73-65)÷2=4。定义的新运算是:a⊙b=3a+5ab+4b。8⊙5=3×8+5×8×5+4×5=244,5⊙8=3×5+5×5×8+4×8=247。因为244≠247,所以8⊙5≠5⊙8。(2)要使a⊙b=b⊙a,由新运算的定义,有3a+5ab+kb=3b+5ab+ka,3a+kb-3b-ka=0,3×(a-b)-k(a-b)=0,(3-k)(a-b)=0。对于两个任意数a,b,要使上式成立,必有3-k=0,即k=3。当新运算是a⊙b=3a+5ab+3b时,具有交换律,即a⊙b=b⊙a。例3对两个自然数a和b,它们的最小公倍数与最大公约数的差,定义为a☆b,即a☆b=[a,b]-(a,b)。比如,10和14的最小公倍数是70,最大公约数是2,那么10☆14=70-2=68。(1)求12☆21的值;(2)已知6☆x=27,求x的值。分析与解:(1)12☆21=[12,21]-(12,21)=84-3=81;(2)因为定义的新运算“☆”没有四则运算表达式,所以不能直接把数代入表达式求x,只能用推理的方法。因为6☆x=[6,x]-(6,x)=27,而6与x的最大公约数(6,x)只能是1,2,3,6。所以6与x的最小公倍数[6,x]只能是28,29,30,33。这四个数中只有30是6的倍数,所以6与x的最小公倍数和最大公约数分别是30和3。因为a×b=[a,b]×(a,b),所以6×x=30×3,由此求得x=15。4、规定“⊙”表示运算:a⊙b=3×a+2×b,计算:(1)4⊙5(2)5⊙4(3)4⊙2⊙3(4)4⊙(2⊙3)5、定义运算“&”a&b=a×b—(a+b),求:(1)5&7=7&5=(2)12&(3&4)(12&3)&4(3)这个运算“&”有交换律和结合律吗?6、定义一种运算“*”,*表示把和加起来除以4(1)求19*17的值。(2)2*(3*5)的值。(3)求a*16=10中a的值。1。规定:a※b=(b+a)×b,那么:(2※3)※5得多少?2。规定:a⊙b=a/b-b/a,则:2⊙(5⊙3)得多少?3。规定:a※b=(a+2b)/3,若6※x=22/3,则x是多少?4。如果a△b表示(a-2)×b,例如3△4=(3-2)×4=4,当a△5=30时,那么a是多少?5。已知a,b是任意有理数,我们规定:a⊙b=a+b-1,a⊙b=ab-2,那么4⊙【(6⊙8)(3